BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16225262)

  • 1. Quantification of ovine bone adaptation to altered load: morphometry, density, and surface strain.
    Lee TC; Taylor D
    Eur J Morphol; 2003; 41(3-4):117-25. PubMed ID: 16225262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone adaptation to load: microdamage as a stimulus for bone remodelling.
    Lee TC; Staines A; Taylor D
    J Anat; 2002 Dec; 201(6):437-46. PubMed ID: 12489756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution.
    Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB
    J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.
    Saxon LK; Robling AG; Alam I; Turner CH
    Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Danielsen CC; Hvid I
    Calcif Tissue Int; 2008 Jan; 82(1):77-86. PubMed ID: 18175032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniformity of resorptive bone loss induced by disuse.
    Gross TS; Rubin CT
    J Orthop Res; 1995 Sep; 13(5):708-14. PubMed ID: 7472749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading.
    Saxon LK; Turner CH
    Bone; 2006 Dec; 39(6):1261-7. PubMed ID: 16934543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in bone micro-architecture and bone mineral density following experimental osteonecrosis of femoral head by local injection of ethanol in canines].
    Li H; Zhang C; Zeng B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):281-9. PubMed ID: 18396703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats.
    Barrett JG; Sample SJ; McCarthy J; Kalscheur VL; Muir P; Prokuski L
    J Orthop Res; 2007 Aug; 25(8):1070-7. PubMed ID: 17444501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of ovine compact bone viscoelastic properties: effects of architecture, mineralization, and remodeling.
    Les CM; Spence CA; Vance JL; Christopherson GT; Patel B; Turner AS; Divine GW; Fyhrie DP
    Bone; 2004 Sep; 35(3):729-38. PubMed ID: 15336610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adaptive remodeling of bone--change of radius shape after resection of ulna in dog].
    Kanaya T
    Kokubyo Gakkai Zasshi; 2004 Mar; 71(1):1-10. PubMed ID: 15103954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo loading model to examine bone adaptation in humans: a pilot study.
    Troy KL; Edwards WB; Bhatia VA; Bareither ML
    J Orthop Res; 2013 Sep; 31(9):1406-13. PubMed ID: 23740548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.