BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1622603)

  • 1. The electrical conductivity of phospholipid films as an iodine-sensing mechanism.
    Jendrasiak GL; Madison GE; Smith R; McIntosh TJ
    Biosens Bioelectron; 1992; 7(4):291-300. PubMed ID: 1622603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of water with the phospholipid head group and its relationship to the lipid electrical conductivity.
    Jendrasiak GL; Smith RL
    Chem Phys Lipids; 2004 Sep; 131(2):183-95. PubMed ID: 15351270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dipole potential of phospholipid membranes and methods for its detection.
    Clarke RJ
    Adv Colloid Interface Sci; 2001 Jan; 89-90():263-81. PubMed ID: 11215797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short range order of hydrocarbon chains in fluid phospholipid bilayers studied by x-ray diffraction from highly oriented membranes.
    Spaar A; Salditt T
    Biophys J; 2003 Sep; 85(3):1576-84. PubMed ID: 12944274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The condensing effect of cholesterol in lipid bilayers.
    Hung WC; Lee MT; Chen FY; Huang HW
    Biophys J; 2007 Jun; 92(11):3960-7. PubMed ID: 17369407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental tests for protrusion and undulation pressures in phospholipid bilayers.
    McIntosh TJ; Advani S; Burton RE; Zhelev DV; Needham D; Simon SA
    Biochemistry; 1995 Jul; 34(27):8520-32. PubMed ID: 7612594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications.
    Volpati D; Machado AD; Olivati CA; Alves N; Curvelo AA; Pasquini D; Constantino CJ
    Biomacromolecules; 2011 Sep; 12(9):3223-31. PubMed ID: 21766835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes.
    Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN
    Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of non-ionic surfactants N-alkyl-N,N-dimethylamine-N-oxides on the structure of a phospholipid bilayer: small-angle X-ray diffraction study.
    Karlovská J; Lohner K; Degovics G; Lacko I; Devínsky F; Balgavý P
    Chem Phys Lipids; 2004 Apr; 129(1):31-41. PubMed ID: 14998725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsaturated phospholipid acyl chains are required to constitute membrane binding sites for factor VIII.
    Gilbert GE; Arena AA
    Biochemistry; 1998 Sep; 37(39):13526-35. PubMed ID: 9753438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures.
    Dorset DL
    Biophys J; 1991 Dec; 60(6):1366-73. PubMed ID: 1777564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the phase transition on the hydration and electrical conductivity of phospholipids.
    Jendrasiak GL; Mendible JC
    Biochim Biophys Acta; 1976 Feb; 424(2):133-48. PubMed ID: 1252486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-induced ordering in mixed-lipid bilayers.
    Brown A; Skanes I; Morrow MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011913. PubMed ID: 14995653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation effects of dimethyl sulphoxide on the structure of phospholipid bilayers.
    Yu ZW; Quinn PJ
    Biophys Chem; 1998 Jan; 70(1):35-9. PubMed ID: 9474761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magainin 2 in phospholipid bilayers: peptide orientation and lipid chain ordering studied by X-ray diffraction.
    Münster C; Spaar A; Bechinger B; Salditt T
    Biochim Biophys Acta; 2002 May; 1562(1-2):37-44. PubMed ID: 11988220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic potential barrier in asymmetric planar lipopolysaccharide/phospholipid bilayers probed with the valinomycin-K+ complex.
    Seydel U; Eberstein W; Schröder G; Brandenburg K
    Z Naturforsch C J Biosci; 1992; 47(9-10):757-61. PubMed ID: 1449594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of platelet-activating factor (PAF), lyso-PAF and lysophosphatidylcholine on phosphatidylcholine bilayers, an ESR, 31P-NMR and X-ray diffraction study.
    Olivier JL; Chachaty C; Quinn PJ; Wolf C
    J Lipid Mediat; 1991; 3(3):311-32. PubMed ID: 1663404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure analysis of polymerized phospholipid bilayer by TED and direct methods.
    Stevens M; Longo M; Dorset DL; Spence J
    Ultramicroscopy; 2002 Apr; 90(4):265-72. PubMed ID: 11942645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations.
    Huber T; Rajamoorthi K; Kurze VF; Beyer K; Brown MF
    J Am Chem Soc; 2002 Jan; 124(2):298-309. PubMed ID: 11782182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state 2H NMR spectroscopy.
    Petrache HI; Salmon A; Brown MF
    J Am Chem Soc; 2001 Dec; 123(50):12611-22. PubMed ID: 11741426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.