BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 16226275)

  • 1. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
    Szedlacsek SE; Aricescu AR; Fulga TA; Renault L; Scheidig AJ
    J Mol Biol; 2001 Aug; 311(3):557-68. PubMed ID: 11493009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP.
    Pettiford SM; Herbst R
    Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase.
    Saxena M; Williams S; Taskén K; Mustelin T
    Nat Cell Biol; 1999 Sep; 1(5):305-11. PubMed ID: 10559944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents.
    Muñoz JJ; Tárrega C; Blanco-Aparicio C; Pulido R
    Biochem J; 2003 May; 372(Pt 1):193-201. PubMed ID: 12583813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation.
    Gronda M; Arab S; Iafrate B; Suzuki H; Zanke BW
    Mol Cell Biol; 2001 Oct; 21(20):6851-8. PubMed ID: 11564869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the membrane distal phosphatase domain of RPTPalpha reveals interdomain flexibility and an SH2 domain interaction region.
    Sonnenburg ED; Bilwes A; Hunter T; Noel JP
    Biochemistry; 2003 Jul; 42(26):7904-14. PubMed ID: 12834342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
    Pulido R; Zúñiga A; Ullrich A
    EMBO J; 1998 Dec; 17(24):7337-50. PubMed ID: 9857190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL.
    Walma T; Spronk CA; Tessari M; Aelen J; Schepens J; Hendriks W; Vuister GW
    J Mol Biol; 2002 Mar; 316(5):1101-10. PubMed ID: 11884147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the human LC-PTP (HePTP) gene: similarity in genomic organization within protein-tyrosine phosphatase genes.
    Adachi M; Miyachi T; Sekiya M; Hinoda Y; Yachi A; Imai K
    Oncogene; 1994 Oct; 9(10):3031-5. PubMed ID: 8084610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation.
    Stewart AE; Dowd S; Keyse SM; McDonald NQ
    Nat Struct Biol; 1999 Feb; 6(2):174-81. PubMed ID: 10048930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location.
    Nika K; Hyunh H; Williams S; Paul S; Bottini N; Taskén K; Lombroso PJ; Mustelin T
    Biochem J; 2004 Mar; 378(Pt 2):335-42. PubMed ID: 14613483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphatase domains of LAR, CD45, and PTP1B: structural correlations with peptide-based inhibitors.
    Glover NR; Tracey AS
    Biochem Cell Biol; 2000; 78(1):39-50. PubMed ID: 10735562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta).
    Drake PG; Peters GH; Andersen HS; Hendriks W; Møller NP
    Biochem J; 2003 Jul; 373(Pt 2):393-401. PubMed ID: 12697028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase.
    Blanco-Aparicio C; Torres J; Pulido R
    J Cell Biol; 1999 Dec; 147(6):1129-36. PubMed ID: 10601328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP.
    Tárrega C; Blanco-Aparicio C; Muñoz JJ; Pulido R
    J Biol Chem; 2002 Jan; 277(4):2629-36. PubMed ID: 11711538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells.
    Pettiford SM; Herbst R
    Leukemia; 2003 Feb; 17(2):366-78. PubMed ID: 12592337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii.
    Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ
    J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations on the free and complexed N-terminal SH2 domain of SHP-2.
    Wieligmann K; Pineda De Castro LF; Zacharias M
    In Silico Biol; 2002; 2(3):305-11. PubMed ID: 12542415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.