BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16226275)

  • 21. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.
    Pasquo A; Consalvi V; Knapp S; Alfano I; Ardini M; Stefanini S; Chiaraluce R
    PLoS One; 2012; 7(2):e32555. PubMed ID: 22389709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of Engineered Protein Tyrosine Phosphatases with the Biarsenical Compound AsCy3-EDT
    Chan WC; Knowlton GS; Bishop AC
    Chembiochem; 2017 Oct; 18(19):1950-1958. PubMed ID: 28745017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics.
    Welsh CL; Madan LK
    J Chem Inf Model; 2024 Feb; 64(4):1331-1346. PubMed ID: 38346324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design.
    Lountos GT; Raran-Kurussi S; Zhao BM; Dyas BK; Burke TR; Ulrich RG; Waugh DS
    Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):1015-1026. PubMed ID: 30289412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain.
    Hill JM; Vaidyanathan H; Ramos JW; Ginsberg MH; Werner MH
    EMBO J; 2002 Dec; 21(23):6494-504. PubMed ID: 12456656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of human dual-specificity phosphatase 7, a potential cancer drug target.
    Lountos GT; Austin BP; Tropea JE; Waugh DS
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):650-6. PubMed ID: 26057789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases.
    Hong SH; Xi SY; Johns AC; Tang LC; Li A; Hum MN; Chartier CA; Jovanovic M; Shah NH
    Chembiochem; 2023 May; 24(10):e202200706. PubMed ID: 36893077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The receptor PTPRU is a redox sensitive pseudophosphatase.
    Hay IM; Fearnley GW; Rios P; Köhn M; Sharpe HJ; Deane JE
    Nat Commun; 2020 Jun; 11(1):3219. PubMed ID: 32591542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain.
    Liu Y; Stanford SM; Jog SP; Fiorillo E; Orrú V; Comai L; Bottini N
    Biochemistry; 2009 Aug; 48(31):7525-32. PubMed ID: 19586056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence - dynamics - function relationships in protein tyrosine phosphatases.
    Crean RM; Corbella M; Calixto AR; Hengge AC; Kamerlin SCL
    QRB Discov; 2024; 5():e4. PubMed ID: 38689874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single Residue on the WPD-Loop Affects the pH Dependency of Catalysis in Protein Tyrosine Phosphatases.
    Shen R; Crean RM; Johnson SJ; Kamerlin SCL; Hengge AC
    JACS Au; 2021 May; 1(5):646-659. PubMed ID: 34308419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme Mechanistic Studies of NMA1982, a Protein Tyrosine Phosphatase and Potential Virulence Factor in Neisseria meningitidis.
    Wu S; Coureuil M; Nassif X; Tautz L
    Res Sq; 2023 Aug; ():. PubMed ID: 37693380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMA1982 is a Novel Phosphatase and Potential Virulence Factor in
    Wu S; Coureuil M; Nassif X; Tautz L
    bioRxiv; 2023 May; ():. PubMed ID: 37292688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single Ion Pair Is Essential for Stabilizing SHP2's Open Conformation.
    Kim SH; Bulos ML; Adams JA; Yun BK; Bishop AC
    Biochemistry; 2024 Feb; 63(3):273-281. PubMed ID: 38251939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases.
    Eswaran J; von Kries JP; Marsden B; Longman E; Debreczeni JE; Ugochukwu E; Turnbull A; Lee WH; Knapp S; Barr AJ
    Biochem J; 2006 May; 395(3):483-91. PubMed ID: 16441242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity.
    Chen L; Qian Z; Zheng Y; Zhang J; Sun J; Zhou C; Xiao H
    Sci Adv; 2024 Mar; 10(9):eadi7404. PubMed ID: 38416831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein Tyrosine Phosphatases: A new paradigm in an old signaling system?
    Welsh CL; Pandey P; Ahuja LG
    Adv Cancer Res; 2021; 152():263-303. PubMed ID: 34353440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of
    Dingwoke EJ; Adamude FA; Chukwuocha CE; Ambi AA; Nwobodo NN; Sallau AB; Nzelibe HC
    J Exp Pharmacol; 2019; 11():135-148. PubMed ID: 31908547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.
    Stanford SM; Aleshin AE; Zhang V; Ardecky RJ; Hedrick MP; Zou J; Ganji SR; Bliss MR; Yamamoto F; Bobkov AA; Kiselar J; Liu Y; Cadwell GW; Khare S; Yu J; Barquilla A; Chung TDY; Mustelin T; Schenk S; Bankston LA; Liddington RC; Pinkerton AB; Bottini N
    Nat Chem Biol; 2017 Jun; 13(6):624-632. PubMed ID: 28346406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.
    Zeke A; Misheva M; Reményi A; Bogoyevitch MA
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):793-835. PubMed ID: 27466283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.