These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16226456)

  • 1. 'Sweetening' natural products via glycorandomization.
    Griffith BR; Langenhan JM; Thorson JS
    Curr Opin Biotechnol; 2005 Dec; 16(6):622-30. PubMed ID: 16226456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification.
    Langenhan JM; Griffith BR; Thorson JS
    J Nat Prod; 2005 Nov; 68(11):1696-711. PubMed ID: 16309329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization.
    Yang J; Fu X; Liao J; Liu L; Thorson JS
    Chem Biol; 2005 Jun; 12(6):657-64. PubMed ID: 15975511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycorandomization: A promising diversification strategy for the drug development.
    Goel B; Tripathi N; Mukherjee D; Jain SK
    Eur J Med Chem; 2021 Mar; 213():113156. PubMed ID: 33460832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiotic optimization via in vitro glycorandomization.
    Fu X; Albermann C; Jiang J; Liao J; Zhang C; Thorson JS
    Nat Biotechnol; 2003 Dec; 21(12):1467-9. PubMed ID: 14608364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial chemoenzymatic strategies for in vitro glycorandomization: Efforts toward antibiotic optimization.
    Fu X; Langenhan JM; Thorson JS
    Discov Med; 2004 Apr; 4(21):111-4. PubMed ID: 20705004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermenting next generation glycosylated therapeutics.
    Chen X
    ACS Chem Biol; 2011 Jan; 6(1):14-7. PubMed ID: 21250649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting the rationale behind substrate recognition by promiscuous thermophilic NDP-sugar pyrophosphorylase for expanding glycorandomization: an
    Gogoi P; Mordina P; Kanaujia SP
    J Biomol Struct Dyn; 2021 Oct; 39(16):6099-6111. PubMed ID: 32692307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general, iterative, and modular approach toward carbohydrate libraries based on ruthenium-catalyzed oxidative cyclizations.
    Niggemann M; Jelonek A; Biber N; Wuchrer M; Plietker B
    J Org Chem; 2008 Sep; 73(18):7028-36. PubMed ID: 18707173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colchicine glycorandomization influences cytotoxicity and mechanism of action.
    Ahmed A; Peters NR; Fitzgerald MK; Watson JA; Hoffmann FM; Thorson JS
    J Am Chem Soc; 2006 Nov; 128(44):14224-5. PubMed ID: 17076473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic tools for engineering natural product glycosylation.
    Blanchard S; Thorson JS
    Curr Opin Chem Biol; 2006 Jun; 10(3):263-71. PubMed ID: 16675288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the glycosylation of natural products in actinomycetes.
    Salas JA; Méndez C
    Trends Microbiol; 2007 May; 15(5):219-32. PubMed ID: 17412593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant E. coli prototype strains for in vivo glycorandomization.
    Williams GJ; Yang J; Zhang C; Thorson JS
    ACS Chem Biol; 2011 Jan; 6(1):95-100. PubMed ID: 20886903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for the chemoenzymatic synthesis of deoxysugar nucleotides: substrate binding versus catalysis.
    Ko KS; Zea CJ; Pohl NL
    J Org Chem; 2005 Mar; 70(5):1919-21. PubMed ID: 15730323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules.
    Gantt RW; Peltier-Pain P; Thorson JS
    Nat Prod Rep; 2011 Oct; 28(11):1811-53. PubMed ID: 21901218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved catalytic and stereoselective glycosylation with glycosyl N-trichloroacetylcarbamate: application to various 1-hydroxy sugars.
    Shirahata T; Matsuo J; Teruya S; Hirata N; Kurimoto T; Akimoto N; Sunazuka T; Kaji E; Omura S
    Carbohydr Res; 2010 Apr; 345(6):740-9. PubMed ID: 20207348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-Glycosylation Diversification (PGD): An Approach for Assembling Collections of Glycosylated Small Molecules.
    Cannone Z; Shaqra AM; Lorenc C; Henowitz L; Keshipeddy S; Robinson VL; Zweifach A; Wright D; Peczuh MW
    ACS Comb Sci; 2019 Mar; 21(3):192-197. PubMed ID: 30607941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended sugar-assisted glycopeptide ligations: development, scope, and applications.
    Payne RJ; Ficht S; Tang S; Brik A; Yang YY; Case DA; Wong CH
    J Am Chem Soc; 2007 Nov; 129(44):13527-36. PubMed ID: 17935327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential effect of ultrasound on carbohydrates.
    Bera S; Mondal D; Martin JT; Singh M
    Carbohydr Res; 2015 Jun; 410():15-35. PubMed ID: 25954862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.