These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16227085)

  • 1. Determining speciation of Pb in phosphate-amended soils: method limitations.
    Scheckel KG; Ryan JA; Allen D; Lescano NV
    Sci Total Environ; 2005 Nov; 350(1-3):261-72. PubMed ID: 16227085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic speciation and quantification of lead in phosphate-amended soils.
    Scheckel KG; Ryan JA
    J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.
    Hashimoto Y; Takaoka M; Shiota K
    J Environ Qual; 2011; 40(3):696-703. PubMed ID: 21546656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A test of sequential extractions for determining metal speciation in sewage sludge-amended soils.
    Kim B; McBride MB
    Environ Pollut; 2006 Nov; 144(2):475-82. PubMed ID: 16603292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ozonation on extractability of Pb and Zn from contaminated soils.
    Lestan D; Hanc A; Finzgar N
    Chemosphere; 2005 Nov; 61(7):1012-9. PubMed ID: 16257321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pb speciation versus TCLP release in army firing range soils.
    Dermatas D; Shen G; Chrysochoou M; Grubb DG; Menounou N; Dutko P
    J Hazard Mater; 2006 Aug; 136(1):34-46. PubMed ID: 16387429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.
    Baker LR; Pierzynski GM; Hettiarachchi GM; Scheckel KG; Newville M
    J Environ Qual; 2012; 41(6):1865-73. PubMed ID: 23128743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils.
    Chen SB; Zhu YG; Ma YB
    J Hazard Mater; 2006 Jun; 134(1-3):74-9. PubMed ID: 16310936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a sequential extraction procedure for perturbed lead-contaminated samples with and without phosphorus amendments.
    Scheckel KG; Impellitteri CA; Ryan JA; McEvoy T
    Environ Sci Technol; 2003 May; 37(9):1892-8. PubMed ID: 12775062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.).
    Park JH; Bolan N; Megharaj M; Naidu R
    J Environ Manage; 2011 Apr; 92(4):1115-20. PubMed ID: 21190789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.