These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16227085)
21. Remediation of heavy metals contaminated soils by ball milling. Montinaro S; Concas A; Pisu M; Cao G Chemosphere; 2007 Mar; 67(4):631-9. PubMed ID: 17188323 [TBL] [Abstract][Full Text] [Related]
22. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Hashimoto Y; Matsufuru H; Sato T Chemosphere; 2008 Oct; 73(5):643-9. PubMed ID: 18752832 [TBL] [Abstract][Full Text] [Related]
23. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Halim CE; Scott JA; Amal R; Short SA; Beydoun D; Low G; Cattle J J Hazard Mater; 2005 Apr; 120(1-3):101-11. PubMed ID: 15811670 [TBL] [Abstract][Full Text] [Related]
24. Microbial indicators of heavy metal contamination in urban and rural soils. Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826 [TBL] [Abstract][Full Text] [Related]
25. Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure. Chen S; Sun L; Chao L; Zhou Q; Sun T Bull Environ Contam Toxicol; 2009 Jan; 82(1):43-7. PubMed ID: 18854907 [TBL] [Abstract][Full Text] [Related]
26. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil. Yang J; Mosby D Sci Total Environ; 2006 Jul; 366(1):136-42. PubMed ID: 16216312 [TBL] [Abstract][Full Text] [Related]
27. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Kilbride C; Poole J; Hutchings TR Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626 [TBL] [Abstract][Full Text] [Related]
28. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Liu R; Zhao D Water Res; 2007 Jun; 41(12):2491-502. PubMed ID: 17482234 [TBL] [Abstract][Full Text] [Related]
29. Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy. Gräfe M; Singh B; Balasubramanian M J Colloid Interface Sci; 2007 Nov; 315(1):21-32. PubMed ID: 17714722 [TBL] [Abstract][Full Text] [Related]
30. Phosphate treatment of firing range soils: lead fixation or phosphorus release? Dermatas D; Chrysochoou M; Grubb DG; Xu X J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877 [TBL] [Abstract][Full Text] [Related]
31. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science. Scheckel KG; Diamond GL; Burgess MF; Klotzbach JM; Maddaloni M; Miller BW; Partridge CR; Serda SM J Toxicol Environ Health B Crit Rev; 2013; 16(6):337-80. PubMed ID: 24151967 [TBL] [Abstract][Full Text] [Related]
32. Sample drying effects on lead bioaccessibility in reduced soil. Furman O; Strawn DG; McGeehan S J Environ Qual; 2007; 36(3):899-903. PubMed ID: 17485722 [TBL] [Abstract][Full Text] [Related]
33. Lead speciation in house dust from Canadian urban homes using EXAFS, micro-XRF, and micro-XRD. MacLean LC; Beauchemin S; Rasmussen PE Environ Sci Technol; 2011 Jul; 45(13):5491-7. PubMed ID: 21591711 [TBL] [Abstract][Full Text] [Related]
34. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chaturvedi PK; Seth CS; Misra V Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377 [TBL] [Abstract][Full Text] [Related]
35. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil. Raicevic S; Perovic V; Zouboulis AI Waste Manag; 2009 May; 29(5):1779-84. PubMed ID: 19138506 [TBL] [Abstract][Full Text] [Related]
36. Solid-phase control on lead bioaccessibility in smelter-impacted soils. Romero FM; Villalobos M; Aguirre R; Gutiérrez ME Arch Environ Contam Toxicol; 2008 Nov; 55(4):566-75. PubMed ID: 18320262 [TBL] [Abstract][Full Text] [Related]
37. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Scheinost AC; Kretzschmar R; Pfister S; Roberts DR Environ Sci Technol; 2002 Dec; 36(23):5021-8. PubMed ID: 12523415 [TBL] [Abstract][Full Text] [Related]
38. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301 [TBL] [Abstract][Full Text] [Related]
39. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils. Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360 [TBL] [Abstract][Full Text] [Related]
40. Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils. Fang J; Wen B; Shan XQ; Lin JM; Owens G Environ Pollut; 2007 Nov; 150(2):209-17. PubMed ID: 17428595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]