These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1622756)

  • 1. Contamination of pig hindquarters with Staphylococcus aureus.
    Schraft H; Kleinlein N; Untermann F
    Int J Food Microbiol; 1992; 15(1-2):191-4. PubMed ID: 1622756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Arcobacter contamination on Belgian pork carcasses and raw retail pork.
    Van Driessche E; Houf K
    Int J Food Microbiol; 2007 Aug; 118(1):20-6. PubMed ID: 17588701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incidence of coagulase positive Staphylococcus on beef carcasses in three Australian abattoirs.
    Desmarchelier PM; Higgs GM; Mills L; Sullivan AM; Vanderlinde PB
    Int J Food Microbiol; 1999 Mar; 47(3):221-9. PubMed ID: 10359492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic Mesophilic, Coliform,
    Jaja IF; Green E; Muchenje V
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29690529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiological contamination of pig carcasses at different stages of slaughter in two European Union-approved abattoirs.
    Spescha C; Stephan R; Zweifel C
    J Food Prot; 2006 Nov; 69(11):2568-75. PubMed ID: 17133797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between slaughter practices and the distribution of Salmonella and hygiene indicator bacteria on pig carcasses during slaughter.
    Biasino W; De Zutter L; Mattheus W; Bertrand S; Uyttendaele M; Van Damme I
    Food Microbiol; 2018 Apr; 70():192-199. PubMed ID: 29173627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of slaughterhouse and day of sample on the probability of a pig carcass being Salmonella-positive according to the Enterobacteriaceae count in the largest Brazilian pork production region.
    Corbellini LG; Júnior AB; de Freitas Costa E; Duarte AS; Albuquerque ER; Kich JD; Cardoso M; Nauta M
    Int J Food Microbiol; 2016 Jul; 228():58-66. PubMed ID: 27107299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial contamination of carcasses, meat, and equipment from an Iberian pork cutting plant.
    Palá TR; Sevilla A
    J Food Prot; 2004 Aug; 67(8):1624-9. PubMed ID: 15330525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution and genetic characterization of porcine Campylobacter coli isolates].
    Alter T; Gaull F; Kasimir S; Gürtler M; Fehlhaber K
    Berl Munch Tierarztl Wochenschr; 2005; 118(5-6):214-9. PubMed ID: 15918485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence and Characterization of Staphylococcus aureus Strains in the Pork Chain Supply in Chile.
    Velasco V; Vergara JL; Bonilla AM; Muñoz J; Mallea A; Vallejos D; Quezada-Aguiluz M; Campos J; Rojas-García P
    Foodborne Pathog Dis; 2018 May; 15(5):262-268. PubMed ID: 29364698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From pig to pork: methicillin-resistant Staphylococcus aureus in the pork production chain.
    Lassok B; Tenhagen BA
    J Food Prot; 2013 Jun; 76(6):1095-108. PubMed ID: 23726208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A seven-year survey of Campylobacter contamination in meat at different production stages in Belgium.
    Ghafir Y; China B; Dierick K; De Zutter L; Daube G
    Int J Food Microbiol; 2007 May; 116(1):111-20. PubMed ID: 17321622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirs.
    Lindblad M
    Int J Food Microbiol; 2007 Sep; 118(2):180-5. PubMed ID: 17706823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aw value and storage temperature on the multiplication and enterotoxin formation of staphylococci in dry-cured raw hams.
    Untermann F; Müller C
    Int J Food Microbiol; 1992 Jun; 16(2):109-15. PubMed ID: 1445753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial quality of ostrich carcasses produced at an export-approved South African abattoir.
    Karama M; de Jesus AE; Veary CM
    J Food Prot; 2003 May; 66(5):878-81. PubMed ID: 12747700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid decontamination of fresh pork carcasses: a pilot plant study.
    van Netten P; Mossel DA; Huis In 't Veld J
    Int J Food Microbiol; 1995 Mar; 25(1):1-9. PubMed ID: 7599025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of enterobacterial repetitive intergenic consensus-polymerase chain reaction to trace the fate of generic Escherichia coli within a high capacity pork slaughter line.
    Namvar A; Warriner K
    Int J Food Microbiol; 2006 Apr; 108(2):155-63. PubMed ID: 16386814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hygienic treatments during slaughtering on microbial dynamics and contamination of sheep meat.
    Omer MK; Hauge SJ; Østensvik Ø; Moen B; Alvseike O; Røtterud OJ; Prieto M; Dommersnes S; Nesteng OH; Nesbakken T
    Int J Food Microbiol; 2015 Feb; 194():7-14. PubMed ID: 25461602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiological contamination of reindeer carcass during slaughter.
    Vaarala A; Korkeala H
    Acta Vet Scand; 1994; 35(4):383-8. PubMed ID: 7676921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain.
    Beneke B; Klees S; Stührenberg B; Fetsch A; Kraushaar B; Tenhagen BA
    J Food Prot; 2011 Jan; 74(1):126-9. PubMed ID: 21219774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.