These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16228189)

  • 1. RECORD: a novel method for ordering loci on a genetic linkage map.
    Van Os H; Stam P; Visser RG; Van Eck HJ
    Theor Appl Genet; 2005 Dec; 112(1):30-40. PubMed ID: 16228189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of algorithms used to order markers on genetic maps.
    Mollinari M; Margarido GR; Vencovsky R; Garcia AA
    Heredity (Edinb); 2009 Dec; 103(6):494-502. PubMed ID: 19639011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data.
    van Os H; Stam P; Visser RG; van Eck HJ
    Theor Appl Genet; 2005 Dec; 112(1):187-94. PubMed ID: 16258753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nearest-neighboring-end algorithm for genetic mapping.
    Crane CF; Crane YM
    Bioinformatics; 2005 Apr; 21(8):1579-91. PubMed ID: 15564296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling.
    Preedy KF; Hackett CA
    Theor Appl Genet; 2016 Nov; 129(11):2117-2132. PubMed ID: 27502200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designs of reference families for the construction of genetic linkage maps.
    Da Y; VanRaden PM; Li N; Beattie CW; Wu C; Schook LB
    Anim Biotechnol; 1998; 9(3):205-28. PubMed ID: 9914814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for estimating linkage maps.
    Tan YD; Fu YX
    Genetics; 2006 Aug; 173(4):2383-90. PubMed ID: 16783016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps.
    Hackett CA; Broadfoot LB
    Heredity (Edinb); 2003 Jan; 90(1):33-8. PubMed ID: 12522423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing large-scale genetic maps using an evolutionary strategy algorithm.
    Mester D; Ronin Y; Minkov D; Nevo E; Korol A
    Genetics; 2003 Dec; 165(4):2269-82. PubMed ID: 14704202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient multipoint mapping: making use of dominant repulsion-phase markers.
    Mester DI; Ronin YI; Hu Y; Peng J; Nevo E; Korol AB
    Theor Appl Genet; 2003 Oct; 107(6):1102-12. PubMed ID: 12928774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases.
    Garcia AA; Kido EA; Meza AN; Souza HM; Pinto LR; Pastina MM; Leite CS; Silva JA; Ulian EC; Figueira A; Souza AP
    Theor Appl Genet; 2006 Jan; 112(2):298-314. PubMed ID: 16307229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate construction of consensus genetic maps via integer linear programming.
    Wu Y; Close TJ; Lonardi S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):381-94. PubMed ID: 20479505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two algorithms, MultiMap and gene mapping system, for automated construction of genetic linkage maps.
    Marinov M; Matise TC; Lathrop GM; Weeks DE
    Genet Epidemiol; 1999; 17 Suppl 1():S649-54. PubMed ID: 10597508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative genome approach to marker ordering.
    Faraut T; de Givry S; Chabrier P; Derrien T; Galibert F; Hitte C; Schiex T
    Bioinformatics; 2007 Jan; 23(2):e50-6. PubMed ID: 17237105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations on marker grouping and ordering.
    Wu J; Jenkins J; Zhu J; McCarty J; Watson C
    Theor Appl Genet; 2003 Aug; 107(3):568-73. PubMed ID: 12761620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing the parental linkage phase and the genetic map over distances <1 cM using pooled haploid DNA.
    Gasbarra D; Sillanpää MJ
    Genetics; 2006 Feb; 172(2):1325-35. PubMed ID: 16301209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map.
    van Os H; Andrzejewski S; Bakker E; Barrena I; Bryan GJ; Caromel B; Ghareeb B; Isidore E; de Jong W; van Koert P; Lefebvre V; Milbourne D; Ritter E; van der Voort JN; Rousselle-Bourgeois F; van Vliet J; Waugh R; Visser RG; Bakker J; van Eck HJ
    Genetics; 2006 Jun; 173(2):1075-87. PubMed ID: 16582432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and analysis of an efficient recursive linking algorithm for constructing likelihood based genetic maps for a large number of markers.
    Tewari S; Bhandarkar SM; Arnold J
    J Bioinform Comput Biol; 2007 Apr; 5(2a):201-50. PubMed ID: 17589960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high density barley microsatellite consensus map with 775 SSR loci.
    Varshney RK; Marcel TC; Ramsay L; Russell J; Röder MS; Stein N; Waugh R; Langridge P; Niks RE; Graner A
    Theor Appl Genet; 2007 Apr; 114(6):1091-103. PubMed ID: 17345060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the accurate construction of consensus genetic maps.
    Wu Y; Close TJ; Lonardi S
    Comput Syst Bioinformatics Conf; 2008; 7():285-96. PubMed ID: 19642288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.