BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16228196)

  • 1. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study.
    Fu CH; Abel KM; Allin MP; Gasston D; Costafreda SG; Suckling J; Williams SC; McGuire PK
    Psychopharmacology (Berl); 2005 Nov; 183(1):92-102. PubMed ID: 16228196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of S-ketamine induced psychosis during overt continuous verbal fluency.
    Nagels A; Kirner-Veselinovic A; Krach S; Kircher T
    Neuroimage; 2011 Jan; 54(2):1307-14. PubMed ID: 20727411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ketamine-induced psychopathological symptoms on continuous overt rhyme fluency.
    Nagels A; Kirner-Veselinovic A; Wiese R; Paulus FM; Kircher T; Krach S
    Eur Arch Psychiatry Clin Neurosci; 2012 Aug; 262(5):403-14. PubMed ID: 22189657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of psychotic state and task demand on prefrontal function in schizophrenia: an fMRI study of overt verbal fluency.
    Fu CH; Suckling J; Williams SC; Andrew CM; Vythelingum GN; McGuire PK
    Am J Psychiatry; 2005 Mar; 162(3):485-94. PubMed ID: 15741465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
    Krystal JH; Karper LP; Seibyl JP; Freeman GK; Delaney R; Bremner JD; Heninger GR; Bowers MB; Charney DS
    Arch Gen Psychiatry; 1994 Mar; 51(3):199-214. PubMed ID: 8122957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia.
    Kegeles LS; Abi-Dargham A; Zea-Ponce Y; Rodenhiser-Hill J; Mann JJ; Van Heertum RL; Cooper TB; Carlsson A; Laruelle M
    Biol Psychiatry; 2000 Oct; 48(7):627-40. PubMed ID: 11032974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis.
    Dandash O; Harrison BJ; Adapa R; Gaillard R; Giorlando F; Wood SJ; Fletcher PC; Fornito A
    Neuropsychopharmacology; 2015 Feb; 40(3):622-31. PubMed ID: 25141922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function.
    Krystal JH; Perry EB; Gueorguieva R; Belger A; Madonick SH; Abi-Dargham A; Cooper TB; Macdougall L; Abi-Saab W; D'Souza DC
    Arch Gen Psychiatry; 2005 Sep; 62(9):985-94. PubMed ID: 16143730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective cognitive impairments associated with NMDA receptor blockade in humans.
    Rowland LM; Astur RS; Jung RE; Bustillo JR; Lauriello J; Yeo RA
    Neuropsychopharmacology; 2005 Mar; 30(3):633-9. PubMed ID: 15647751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between ketamine-induced psychotic symptoms and NMDA receptor occupancy: a [(123)I]CNS-1261 SPET study.
    Stone JM; Erlandsson K; Arstad E; Squassante L; Teneggi V; Bressan RA; Krystal JH; Ell PJ; Pilowsky LS
    Psychopharmacology (Berl); 2008 Apr; 197(3):401-8. PubMed ID: 18176855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study.
    Deakin JF; Lees J; McKie S; Hallak JE; Williams SR; Dursun SM
    Arch Gen Psychiatry; 2008 Feb; 65(2):154-64. PubMed ID: 18250253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers.
    Breier A; Malhotra AK; Pinals DA; Weisenfeld NI; Pickar D
    Am J Psychiatry; 1997 Jun; 154(6):805-11. PubMed ID: 9167508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of ketamine effects by nimodipine pretreatment in recovering ethanol dependent men: psychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists.
    Krupitsky EM; Burakov AM; Romanova TN; Grinenko NI; Grinenko AY; Fletcher J; Petrakis IL; Krystal JH
    Neuropsychopharmacology; 2001 Dec; 25(6):936-47. PubMed ID: 11750186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI.
    Northoff G; Richter A; Bermpohl F; Grimm S; Martin E; Marcar VL; Wahl C; Hell D; Boeker H
    Schizophr Res; 2005 Jan; 72(2-3):235-48. PubMed ID: 15560968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions.
    Javitt DC
    Int Rev Neurobiol; 2007; 78():69-108. PubMed ID: 17349858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers.
    Parwani A; Weiler MA; Blaxton TA; Warfel D; Hardin M; Frey K; Lahti AC
    Psychopharmacology (Berl); 2005 Dec; 183(3):265-74. PubMed ID: 16220331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-Ketamine-Induced NMDA Receptor Blockade during Natural Speech Production and Its Implications for Formal Thought Disorder in Schizophrenia: A Pharmaco-fMRI Study.
    Nagels A; Cabanis M; Oppel A; Kirner-Veselinovic A; Schales C; Kircher T
    Neuropsychopharmacology; 2018 May; 43(6):1324-1333. PubMed ID: 29105665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex.
    Usun Y; Eybrard S; Meyer F; Louilot A
    Behav Brain Res; 2013 Nov; 256():229-37. PubMed ID: 23958806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-d-aspartate receptor antagonist ketamine impairs action-monitoring activity in the prefrontal cortex.
    Skoblenick K; Everling S
    J Cogn Neurosci; 2014 Mar; 26(3):577-92. PubMed ID: 24188365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.