These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16228224)

  • 61. IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs.
    Meng Q; Hou XF; Cheng H; Tan XM; Pu ZQ; Xu ZQ
    Plant Cell Rep; 2023 Mar; 42(3):561-574. PubMed ID: 36609767
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.
    Wang X; Fan S; Song M; Pang C; Wei H; Yu J; Ma Q; Yu S
    PLoS One; 2014; 9(3):e91869. PubMed ID: 24626476
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of
    Monniaux M; Pieper B; McKim SM; Routier-Kierzkowska AL; Kierzkowski D; Smith RS; Hay A
    Elife; 2018 Oct; 7():. PubMed ID: 30334736
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Using Arabidopsis to study shoot branching in biomass willow.
    Ward SP; Salmon J; Hanley SJ; Karp A; Leyser O
    Plant Physiol; 2013 Jun; 162(2):800-11. PubMed ID: 23610219
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration.
    Kersten B; Leite Montalvão AP; Hoenicka H; Vettori C; Paffetti D; Fladung M
    Transgenic Res; 2020 Jun; 29(3):321-337. PubMed ID: 32356192
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine.
    Sulpice R; Tsukaya H; Nonaka H; Mustardy L; Chen TH; Murata N
    Plant J; 2003 Oct; 36(2):165-76. PubMed ID: 14535882
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The underlying molecular conservation and diversification of dioecious flower and leaf buds provide insights into the development, dormancy breaking, flowering, and sex association of willows.
    Ye X; Zhao X; Sun Y; Zhang M; Feng S; Zhou A; Wu W; Ma S; Liu S
    Plant Physiol Biochem; 2021 Oct; 167():651-664. PubMed ID: 34488151
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean.
    Thakare D; Tang W; Hill K; Perry SE
    Plant Physiol; 2008 Apr; 146(4):1663-72. PubMed ID: 18305206
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cloning and functional identification of the AcLFY gene in Allium cepa.
    Yang C; Ye Y; Song C; Chen D; Jiang B; Wang Y
    Biochem Biophys Res Commun; 2016 May; 473(4):1100-1105. PubMed ID: 27074580
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
    Salmon J; Ward SP; Hanley SJ; Leyser O; Karp A
    Plant Biotechnol J; 2014 May; 12(4):480-91. PubMed ID: 24393130
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functional verification of the
    Cai J; Jia R; Jiang Y; Fu J; Dong T; Deng J; Zhang L
    PeerJ; 2023; 11():e14938. PubMed ID: 36908820
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Marker-free transgenic plants through genetically programmed auto-excision.
    Verweire D; Verleyen K; De Buck S; Claeys M; Angenon G
    Plant Physiol; 2007 Dec; 145(4):1220-31. PubMed ID: 17965180
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow.
    Keefover-Ring K; Carlson CH; Hyden B; Azeem M; Smart LB
    J Exp Bot; 2022 Oct; 73(18):6352-6366. PubMed ID: 35710312
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evolution of Catkins: Inflorescence Morphology of Selected Salicaceae in an Evolutionary and Developmental Context.
    Cronk QC; Needham I; Rudall PJ
    Front Plant Sci; 2015; 6():1030. PubMed ID: 26697024
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions.
    Soares JM; Weber KC; Qiu W; Stanton D; Mahmoud LM; Wu H; Huyck P; Zale J; Al Jasim K; Grosser JW; Dutt M
    Sci Rep; 2020 Dec; 10(1):21404. PubMed ID: 33293614
    [TBL] [Abstract][Full Text] [Related]  

  • 76.
    Han Y; Tang A; Yu J; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330828
    [No Abstract]   [Full Text] [Related]  

  • 77. A Global View of Transcriptome Dynamics During Male Floral Bud Development in Populus tomentosa.
    Chen Z; Rao P; Yang X; Su X; Zhao T; Gao K; Yang X; An X
    Sci Rep; 2018 Jan; 8(1):722. PubMed ID: 29335419
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.
    Chen Z; Ye M; Su X; Liao W; Ma H; Gao K; Lei B; An X
    Transgenic Res; 2015 Aug; 24(4):705-15. PubMed ID: 25820621
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Overexpression of two PsnAP1 genes from Populus simonii × P. nigra causes early flowering in transgenic tobacco and Arabidopsis.
    Zheng T; Li S; Zang L; Dai L; Yang C; Qu GZ
    PLoS One; 2014; 9(10):e111725. PubMed ID: 25360739
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Constitutive expression of the sunflower and chrysanthemum genes of the AP1/FUL group changes flowering timing in transgenic tobacco plants.
    Goloveshkina EN; Shul'ga OA; Shchennikova AV; Kamionskaya AM; Skryabin KG
    Dokl Biol Sci; 2010; 434():322-4. PubMed ID: 20963654
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.