These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 16228233)
21. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. Jurecka P; Hobza P J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608 [TBL] [Abstract][Full Text] [Related]
22. Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: ab initio quantum-chemical and empirical potential study. Sponer J; Burda JV; Mejzlík P; Leszczynski J; Hobza P J Biomol Struct Dyn; 1997 Apr; 14(5):613-28. PubMed ID: 9130083 [TBL] [Abstract][Full Text] [Related]
23. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair. Coutinho K; Ludwig V; Canuto S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061902. PubMed ID: 15244612 [TBL] [Abstract][Full Text] [Related]
24. How Does Mg Halder A; Roy R; Bhattacharyya D; Mitra A Biophys J; 2017 Jul; 113(2):277-289. PubMed ID: 28506525 [TBL] [Abstract][Full Text] [Related]
25. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. Meyer M; Hocquet A; Sühnel J J Comput Chem; 2005 Mar; 26(4):352-64. PubMed ID: 15648098 [TBL] [Abstract][Full Text] [Related]
26. First-principles quantum calculations on the infrared spectrum and vibrational dynamics of the guanine-cytosine base pair. Yagi K; Karasawa H; Hirata S; Hirao K Chemphyschem; 2009 Jul; 10(9-10):1442-4. PubMed ID: 19421975 [TBL] [Abstract][Full Text] [Related]
27. Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine. Zelený T; Ruckenbauer M; Aquino AJ; Müller T; Lankaš F; Dršata T; Hase WL; Nachtigallova D; Lischka H J Am Chem Soc; 2012 Aug; 134(33):13662-9. PubMed ID: 22845192 [TBL] [Abstract][Full Text] [Related]
28. Mutual assistance of hydrogen-bond pairing and aromatic stacking interactions for molecular recognition: spectroscopic study on the interaction of guanine base with cytosine and tryptophan molecules. Tarui M; Furumura H; Kafuku Y; Ishida T; Inoue M Biochem Biophys Res Commun; 1992 Mar; 183(2):577-83. PubMed ID: 1550566 [TBL] [Abstract][Full Text] [Related]
29. Density functional theory study on the interaction between keto-9H guanine and aspartic acid. Harris PT; Hill GA J Mol Model; 2012 May; 18(5):1983-91. PubMed ID: 21877157 [TBL] [Abstract][Full Text] [Related]
30. The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: A computational study. Üngördü A; Tezer N J Mol Graph Model; 2017 Jun; 74():265-272. PubMed ID: 28458005 [TBL] [Abstract][Full Text] [Related]
31. Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations. Yamazaki S; Taketsugu T Phys Chem Chem Phys; 2012 Jul; 14(25):8866-77. PubMed ID: 22596076 [TBL] [Abstract][Full Text] [Related]
32. Regulation of one-electron oxidation rate of guanine by base pairing with cytosine derivatives. Kawai K; Wata Y; Hara M; Tojo S; Majima T J Am Chem Soc; 2002 Apr; 124(14):3586-90. PubMed ID: 11929247 [TBL] [Abstract][Full Text] [Related]
33. Hydrogen-bonded double-proton transfer in five guanine-cytosine base pairs after hydrogen atom addition. Lin Y; Wang H; Gao S; Li R; Schaefer HF J Phys Chem B; 2012 Aug; 116(30):8908-15. PubMed ID: 22774934 [TBL] [Abstract][Full Text] [Related]
34. Potential energy surfaces of the microhydrated guanine...cytosine base pair and its methylated analogue. Zendlová L; Hobza P; Kabelác M Chemphyschem; 2006 Feb; 7(2):439-47. PubMed ID: 16463334 [TBL] [Abstract][Full Text] [Related]
35. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling. Sun L; Bu Y J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051 [TBL] [Abstract][Full Text] [Related]
36. Effects of OH radical addition on proton transfer in the guanine-cytosine base pair. Zhang Rb; Eriksson LA J Phys Chem B; 2007 Jun; 111(23):6571-6. PubMed ID: 17506547 [TBL] [Abstract][Full Text] [Related]
37. Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions. Wang M; Zhao J; Bu Y Phys Chem Chem Phys; 2013 Nov; 15(42):18453-63. PubMed ID: 24064497 [TBL] [Abstract][Full Text] [Related]
38. Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair. Sigel RK; Freisinger E; Lippert B J Biol Inorg Chem; 2000 Jun; 5(3):287-99. PubMed ID: 10907739 [TBL] [Abstract][Full Text] [Related]
39. Noncovalent interactions between modified cytosine and guanine DNA base pair mimics investigated by terahertz spectroscopy and solid-state density functional theory. King MD; Korter TM J Phys Chem A; 2011 Dec; 115(50):14391-6. PubMed ID: 22107026 [TBL] [Abstract][Full Text] [Related]
40. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions. Bera PP; Schaefer HF Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]