These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 16228259)
1. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Sommer U; Sommer F; Santer B; Zöllner E; Jürgens K; Jamieson C; Boersma M; Gocke K Oecologia; 2003 May; 135(4):639-47. PubMed ID: 16228259 [TBL] [Abstract][Full Text] [Related]
2. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Declerck S; Vanderstukken M; Pals A; Muylaert K; De Meester L Ecology; 2007 Sep; 88(9):2199-210. PubMed ID: 17918398 [TBL] [Abstract][Full Text] [Related]
3. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
4. Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level. Sommer U; Hansen T; Blum O; Holzner N; Vadstein O; Stibor H Oecologia; 2005 Jan; 142(2):274-83. PubMed ID: 15480805 [TBL] [Abstract][Full Text] [Related]
5. Pilot study on control of phytoplankton by zooplankton coupling with filter-feeding fish in surface water. Ma H; Cui F; Liu Z; Fan Z Water Sci Technol; 2009; 60(3):737-43. PubMed ID: 19657169 [TBL] [Abstract][Full Text] [Related]
6. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton. Plum C; Hüsener M; Hillebrand H Ecology; 2015 Nov; 96(11):3075-89. PubMed ID: 27070025 [TBL] [Abstract][Full Text] [Related]
7. The impact of diel vertical migration of Daphnia on phytoplankton dynamics. Reichwaldt ES; Stibor H Oecologia; 2005 Nov; 146(1):50-6. PubMed ID: 16007409 [TBL] [Abstract][Full Text] [Related]
8. The influence of mesozooplankton on phytoplankton nutrient limitation: a mesocosm study with northeast Atlantic plankton. Sommer U; Sommer F; Feuchtmayr H; Hansen T Protist; 2004 Sep; 155(3):295-304. PubMed ID: 15552056 [TBL] [Abstract][Full Text] [Related]
9. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. Havens KE ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947 [TBL] [Abstract][Full Text] [Related]
10. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Chislock MF; Sarnelle O; Jernigan LM; Wilson AE Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484 [TBL] [Abstract][Full Text] [Related]
11. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? de Senerpont Domis LN; Mooij WM; Hülsmann S; van Nes EH; Scheffer M Oecologia; 2007 Jan; 150(4):682-98. PubMed ID: 17024385 [TBL] [Abstract][Full Text] [Related]
12. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Barnett A; Beisner BE Ecology; 2007 Jul; 88(7):1675-86. PubMed ID: 17645014 [TBL] [Abstract][Full Text] [Related]
13. [Effects of large bio-manipulation fish pen on community structure of crustacean zooplankton in Meiliang Bay of Taihu Lake]. Ke ZX; Xie P; Guo LG; Xu J; Zhou Q Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2270-6. PubMed ID: 23189709 [TBL] [Abstract][Full Text] [Related]
14. Beyond the fish- Rakowski CJ; Leibold MA PeerJ; 2022; 10():e14094. PubMed ID: 36193425 [TBL] [Abstract][Full Text] [Related]
15. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652 [TBL] [Abstract][Full Text] [Related]
16. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Thingstad TF; Krom MD; Mantoura RF; Flaten GA; Groom S; Herut B; Kress N; Law CS; Pasternak A; Pitta P; Psarra S; Rassoulzadegan F; Tanaka T; Tselepides A; Wassmann P; Woodward EM; Riser CW; Zodiatis G; Zohary T Science; 2005 Aug; 309(5737):1068-71. PubMed ID: 16099984 [TBL] [Abstract][Full Text] [Related]
17. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons. Jagadeesan L; Jyothibabu R; Arunpandi N; Parthasarathi S Environ Monit Assess; 2017 Mar; 189(3):105. PubMed ID: 28205106 [TBL] [Abstract][Full Text] [Related]
18. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923 [TBL] [Abstract][Full Text] [Related]
19. Coupling of the biochemical composition and calorific content of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Aleya L; Michard M; Khattabi H; Devaux J Environ Technol; 2006 Nov; 27(11):1181-90. PubMed ID: 17203599 [TBL] [Abstract][Full Text] [Related]
20. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Brett MT; Kainz MJ; Taipale SJ; Seshan H Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21197-201. PubMed ID: 19934044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]