These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 16228334)
1. Adaptation of a PAM-fluorometer for remote sensing of chlorophyll fluorescence. Ounis A; Evain S; Flexas J; Tosti S; Moya I Photosynth Res; 2001; 68(2):113-20. PubMed ID: 16228334 [TBL] [Abstract][Full Text] [Related]
2. Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Ting CS; Owens TG Plant Physiol; 1992 Sep; 100(1):367-73. PubMed ID: 16652970 [TBL] [Abstract][Full Text] [Related]
3. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. Meeker EW; Magney TS; Bambach N; Momayyezi M; McElrone AJ AoB Plants; 2021 Feb; 13(1):plaa066. PubMed ID: 33510890 [TBL] [Abstract][Full Text] [Related]
4. Remote monitoring of dynamic canopy photosynthesis with high time resolution light-induced fluorescence transients. Wyber R; Osmond B; Ashcroft MB; Malenovský Z; Robinson SA Tree Physiol; 2018 Sep; 38(9):1302-1318. PubMed ID: 29301044 [TBL] [Abstract][Full Text] [Related]
5. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Jakob T; Schreiber U; Kirchesch V; Langner U; Wilhelm C Photosynth Res; 2005; 83(3):343-61. PubMed ID: 16143924 [TBL] [Abstract][Full Text] [Related]
6. Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe. Schreiber U; Kühl M; Klimant I; Reising H Photosynth Res; 1996 Jan; 47(1):103-9. PubMed ID: 24301712 [TBL] [Abstract][Full Text] [Related]
7. [Effects of suspended silts in waters on the growth and chlorophyll fluorescence characteristics of Hydrilla verticillata]. Li Q; Wang GX Ying Yong Sheng Tai Xue Bao; 2009 Oct; 20(10):2499-505. PubMed ID: 20077711 [TBL] [Abstract][Full Text] [Related]
8. A low-cost and portable fluorometer based on an optical pick-up unit for chlorophyll-a detection. Chen X; Du J; Kanwal S; Yang ZJ; Zheng LL; Wang J; Wen J; Zhang DW Talanta; 2024 Mar; 269():125447. PubMed ID: 38008018 [TBL] [Abstract][Full Text] [Related]
9. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Porcar-Castell A; Tyystjärvi E; Atherton J; van der Tol C; Flexas J; Pfündel EE; Moreno J; Frankenberg C; Berry JA J Exp Bot; 2014 Aug; 65(15):4065-95. PubMed ID: 24868038 [TBL] [Abstract][Full Text] [Related]
10. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence. Magney TS; Frankenberg C; Fisher JB; Sun Y; North GB; Davis TS; Kornfeld A; Siebke K New Phytol; 2017 Sep; 215(4):1594-1608. PubMed ID: 28664542 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Photosynthetic Behaviors by Simultaneous Measurements of Leaf Reflectance and Chlorophyll Fluorescence Analyses. Kohzuma K J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449250 [TBL] [Abstract][Full Text] [Related]
13. Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies. Pieruschka R; Albrecht H; Muller O; Berry JA; Klimov D; Kolber ZS; Malenovský Z; Rascher U Tree Physiol; 2014 Jul; 34(7):674-85. PubMed ID: 24924438 [TBL] [Abstract][Full Text] [Related]
14. Use of a pulse-amplitude modulated chlorophyll fluorometer to study the efficiency of photosynthesis in Arabidopsis plants. Brooks MD; Niyogi KK Methods Mol Biol; 2011; 775():299-310. PubMed ID: 21863450 [TBL] [Abstract][Full Text] [Related]
15. Active in situ and passive airborne fluorescence measurements for water stress detection on a fescue field. Moya I; Loayza H; López ML; Sánchez JM; Goulas Y; Ounis A; Quiroz R; Calera A Photosynth Res; 2023 Feb; 155(2):159-175. PubMed ID: 36462093 [TBL] [Abstract][Full Text] [Related]
16. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves. Hák R; Lichtenthaler HK; Rinderle U Radiat Environ Biophys; 1990; 29(4):329-36. PubMed ID: 2281139 [TBL] [Abstract][Full Text] [Related]
17. Kinetic imaging of chlorophyll fluorescence using modulated light. Nedbal L; Soukupová J; Kaftan D; Whitmarsh J; Trtílek M Photosynth Res; 2000; 66(1-2):3-12. PubMed ID: 16228406 [TBL] [Abstract][Full Text] [Related]
18. Effects of habitat light conditions on the excitation quenching pathways in desiccating Haberlea rhodopensis leaves: an Intelligent FluoroSensor study. Solti Á; Lenk S; Mihailova G; Mayer P; Barócsi A; Georgieva K J Photochem Photobiol B; 2014 Jan; 130():217-25. PubMed ID: 24345600 [TBL] [Abstract][Full Text] [Related]
19. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Porcar-Castell A Physiol Plant; 2011 Oct; 143(2):139-53. PubMed ID: 21615415 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous collection of rapid chlorophyll fluorescence induction kinetics, fluorescence quenching parameters, and environmental data using an automated PAM-2000/CR10X data logging system. Gray DW; Cardon ZG; Lewis LA Photosynth Res; 2006 Mar; 87(3):295-301. PubMed ID: 16699920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]