BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16228447)

  • 1. Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions.
    Chang SH; Bugos RC; Sun WH; Yamamoto HY
    Photosynth Res; 2000; 64(1):95-103. PubMed ID: 16228447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.
    Chen Z; Gallie DR
    Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of zeaxanthin formation does not reduce photosynthesis and growth of transgenic tobacco under field conditions.
    Sun WH; Verhoeven AS; Bugos RC; Yamamoto HY
    Photosynth Res; 2001; 67(1-2):41-50. PubMed ID: 16228315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.
    Bugos RC; Chang SH; Yamamoto HY
    Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Amount of Zeaxanthin Epoxidase But Not the Amount of Violaxanthin De-Epoxidase Is a Critical Determinant of Zeaxanthin Accumulation in Arabidopsis thaliana and Nicotiana tabacum.
    Küster L; Lücke R; Brabender C; Bethmann S; Jahns P
    Plant Cell Physiol; 2023 Oct; 64(10):1220-1230. PubMed ID: 37556318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles.
    Hieber AD; Kawabata O; Yamamoto HY
    Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.
    Hieber AD; Bugos RC; Verhoeven AS; Yamamoto HY
    Planta; 2002 Jan; 214(3):476-83. PubMed ID: 11855651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes.
    Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK
    Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.
    Hallin EI; Guo K; Åkerlund HE
    Physiol Plant; 2016 Aug; 157(4):414-21. PubMed ID: 26864799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle.
    Morosinotto T; Baronio R; Bassi R
    J Biol Chem; 2002 Oct; 277(40):36913-20. PubMed ID: 12114527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Violaxanthin Cycle Pigment Contents in Potato and Tobacco Plants with Genetically Reduced Photosynthetic Capacity.
    Bilger W; Fisahn J; Brummet W; Kossmann J; Willmitzer L
    Plant Physiol; 1995 Aug; 108(4):1479-1486. PubMed ID: 12228557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.
    Bilger W; Björkman O
    Planta; 1991 May; 184(2):226-34. PubMed ID: 24194074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation.
    Hallin EI; Hasan M; Guo K; Åkerlund HE
    Photosynth Res; 2016 Jul; 129(1):29-41. PubMed ID: 27116125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers.
    Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K
    Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B; Strzalka W; Strzalka K
    J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling.
    Ding F; Wang M; Liu B; Zhang S
    Front Plant Sci; 2017; 8():244. PubMed ID: 28265283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach.
    Frommolt R; Goss R; Wilhelm C
    Planta; 2001 Jul; 213(3):446-56. PubMed ID: 11506368
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Lou Y; Sun H; Zhu C; Yang K; Li X; Gao Z
    Front Plant Sci; 2022; 13():927949. PubMed ID: 36035723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions.
    García-Plazaola JI; Matsubara S; Osmond CB
    Funct Plant Biol; 2007 Sep; 34(9):759-773. PubMed ID: 32689404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.