These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16228525)

  • 1. Does a leaf absorb radiation in the near infrared (780-900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves.
    Merzlyak MN; Chivkunova OB; Melø TB; Naqvi KR
    Photosynth Res; 2002; 72(3):263-70. PubMed ID: 16228525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence spectroscopic study of light transmission and adaxial-abaxial distribution of emitting compounds in leaves of Christmas star (Euphorbia pulcherrima).
    Radotić K; Melø TB; Lindgren M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123269. PubMed ID: 37598447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical parameters of leaves of 30 plant species.
    Gausman HW; Allen WA
    Plant Physiol; 1973 Jul; 52(1):57-62. PubMed ID: 16658499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ionizing radiation on intraocular lenses.
    Ellerin BE; Nisce LZ; Roberts CW; Thornell C; Sabbas A; Wang H; Li PM; Nori D
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):184-208. PubMed ID: 11516869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of leaf transmittance in the near infrared region through reflectance measurements.
    Merzlyak MN; Melø TB; Razi Naqvi K
    J Photochem Photobiol B; 2004 May; 74(2-3):145-50. PubMed ID: 15157910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection and transmission measurements with an integrating sphere and Fourier-transform infrared spectrometer.
    Ojala KT; Koski E; Lampinen MJ
    Appl Opt; 1992 Aug; 31(22):4582-9. PubMed ID: 20725464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light.
    Fukutomi D; Ishii K; Awazu K
    Lasers Med Sci; 2015 May; 30(4):1335-40. PubMed ID: 25772249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the effects of water loss on the solar spectrum reflectance and transmittance of
    Gao Y; Tang B; Lu B; Ji G; Ye H
    RSC Adv; 2021 Nov; 11(59):37268-37275. PubMed ID: 35496413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf optical system modeled as a stochastic process.
    Tucker CJ; Garratt MW
    Appl Opt; 1977 Mar; 16(3):635-42. PubMed ID: 20168555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology.
    Olascoaga B; Mac Arthur A; Atherton J; Porcar-Castell A
    Tree Physiol; 2016 Mar; 36(3):368-79. PubMed ID: 26843207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level.
    Potůčková M; Červená L; Kupková L; Lhotáková Z; Lukeš P; Hanuš J; Novotný J; Albrechtová J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.
    Kume A; Akitsu T; Nasahara KN
    J Plant Res; 2016 Jul; 129(4):615-624. PubMed ID: 26943164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.
    Gamon JA; Serrano L; Surfus JS
    Oecologia; 1997 Nov; 112(4):492-501. PubMed ID: 28307626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean effective optical constants of thirteen kinds of plant leaves.
    Allen WA; Gausman HW; Richardson AJ; Wiegand CL
    Appl Opt; 1970 Nov; 9(11):2573-7. PubMed ID: 20094309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples.
    Yang B; Knyazikhin Y; Lin Y; Yan K; Chen C; Park T; Choi S; Mõttus M; Rautiainen M; Myneni RB; Yan L
    Remote Sens (Basel); 2016 Jul; 8(7):563. PubMed ID: 28868160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds.
    Solymosi K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1075-85. PubMed ID: 16651257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in leaf optical properties among 26 species from a broad range of habitats.
    Knapp A; Carter G
    Am J Bot; 1998 Jul; 85(7):940. PubMed ID: 21684977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the optical properties of leaves under diffuse light.
    Gorton HL; Brodersen CR; Williams WE; Vogelmann TC
    Photochem Photobiol; 2010; 86(5):1076-83. PubMed ID: 20553406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2007 Feb; 99(2):255-63. PubMed ID: 17138580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.