These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16228525)

  • 21. [Study of photosynthetic characteristics of transgenic barley based on reflectance of single leaf].
    Sun CX; Yuan F; Zhang YL; Chen ZH; Chen LJ; Wu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):204-8. PubMed ID: 22497160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical properties and nondestructive estimation of anthocyanin content in plant leaves.
    Gitelson AA; Merzlyak MN; Chivkunova OB
    Photochem Photobiol; 2001 Jul; 74(1):38-45. PubMed ID: 11460535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY; Shi JJ; Wang DC; Huang JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Analysis of spectral response of vegetation leaf biochemical components].
    Sun L; Cheng LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3031-5. PubMed ID: 21284178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf and canopy reflectance spectrometry applied to the estimation of angular leaf spot disease severity of common bean crops.
    Martínez-Martínez V; Gomez-Gil J; Machado ML; Pinto FAC
    PLoS One; 2018; 13(4):e0196072. PubMed ID: 29698420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Detection of Puccinia strii formis f. sp. tritici latent infections in wheat leaves using near infrared spectroscopy technology].
    Li XL; Ma ZH; Zhao LL; Li JH; Wang HG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1853-8. PubMed ID: 25269295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating near-infrared leaf reflectance from leaf structural characteristics.
    Slaton MR; Raymond Hunt E; Smith WK
    Am J Bot; 2001 Feb; 88(2):278-84. PubMed ID: 11222250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical algorithm and application of a double-integrating sphere system for measuring leaf transmittance and reflectance spectra.
    Mõttus M; Hovi A; Rautiainen M
    Appl Opt; 2017 Jan; 56(3):563-571. PubMed ID: 28157912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.
    Hama T; Kouchi A; Watanabe N; Enami S; Shimoaka T; Hasegawa T
    J Phys Chem B; 2017 Dec; 121(49):11124-11131. PubMed ID: 29148773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A inversion model for remote sensing of leaf water content based on the leaf optical property].
    Fang MH; Ju WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):167-71. PubMed ID: 25993842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels.
    Nascimento LB; Moreira Ndos S; Leal-Costa MV; Costa SS; Tavares ES
    Ann Bot; 2015 Oct; 116(5):763-9. PubMed ID: 26346722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).
    Horibe T; Ishii K; Fukutomi D; Awazu K
    Laser Ther; 2015 Dec; 24(4):303-10. PubMed ID: 26877594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First Report of Kalanchoe Leaf Scorch Caused by Stemphylium xanthosomatis in Korea.
    Kwon JH; Choi O; Kim J
    Plant Dis; 2012 Feb; 96(2):292. PubMed ID: 30731836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.
    Thennadil SN; Chen YC
    Appl Spectrosc; 2017 Feb; 71(2):224-237. PubMed ID: 27572632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm.
    Eggert HR; Blazek V
    Neurosurgery; 1987 Oct; 21(4):459-64. PubMed ID: 3683777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.
    Whiteside PJD; Qian C; Golda N; Hunt HK
    Lasers Surg Med; 2017 Sep; 49(7):666-674. PubMed ID: 28418076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth, leaf anatomy, and physiology of Populus clones in response to solar ultraviolet-B radiation.
    Schumaker MA; Bassman JH; Robberecht R; Radamaker GK
    Tree Physiol; 1997 Oct; 17(10):617-26. PubMed ID: 14759901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variability in leaf optical properties of Mesoamerican trees and the potential for species classification.
    Castro-Esau KL; Sánchez-Azofeifa GA; Rivard B; Wright SJ; Quesada M
    Am J Bot; 2006 Apr; 93(4):517-30. PubMed ID: 21646212
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.