These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16228576)

  • 1. Evolutionary relationships among photosynthetic bacteria.
    Gupta RS
    Photosynth Res; 2003; 76(1-3):173-83. PubMed ID: 16228576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis.
    Gupta RS; Mukhtar T; Singh B
    Mol Microbiol; 1999 Jun; 32(5):893-906. PubMed ID: 10361294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical issues in bacterial phylogeny.
    Gupta RS; Griffiths E
    Theor Popul Biol; 2002 Jun; 61(4):423-34. PubMed ID: 12167362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The natural evolutionary relationships among prokaryotes.
    Gupta RS
    Crit Rev Microbiol; 2000; 26(2):111-31. PubMed ID: 10890353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins.
    Gupta RS
    Int Microbiol; 2001 Dec; 4(4):187-202. PubMed ID: 12051562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes.
    Gupta RS
    FEMS Microbiol Rev; 2000 Oct; 24(4):367-402. PubMed ID: 10978543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales.
    Griffiths E; Gupta RS
    Int Microbiol; 2004 Mar; 7(1):41-52. PubMed ID: 15179606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution.
    Gupta RS
    Crit Rev Microbiol; 2005; 31(2):101-35. PubMed ID: 15986834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups.
    Gupta RS
    Photosynth Res; 2010 Jun; 104(2-3):357-72. PubMed ID: 20414806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins.
    Khadka B; Adeolu M; Blankenship RE; Gupta RS
    Photosynth Res; 2017 Feb; 131(2):159-171. PubMed ID: 27638319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
    Gupta RS
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1435-91. PubMed ID: 9841678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes.
    Gupta RS
    Antonie Van Leeuwenhoek; 2011 Aug; 100(2):171-82. PubMed ID: 21717204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes.
    Gupta RS; Bustard K; Falah M; Singh D
    J Bacteriol; 1997 Jan; 179(2):345-57. PubMed ID: 8990285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms.
    Gupta RS
    Mol Microbiol; 1998 Aug; 29(3):695-707. PubMed ID: 9723910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic Systems Suggest an Evolutionary Pathway to Diderms.
    Rogers SO
    Acta Biotheor; 2021 Sep; 69(3):343-358. PubMed ID: 33284411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evidence for the early evolution of photosynthesis.
    Xiong J; Fischer WM; Inoue K; Nakahara M; Bauer CE
    Science; 2000 Sep; 289(5485):1724-30. PubMed ID: 10976061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular signatures in protein sequences that are characteristics of the phylum Aquificae.
    Griffiths E; Gupta RS
    Int J Syst Evol Microbiol; 2006 Jan; 56(Pt 1):99-107. PubMed ID: 16403873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gram-positive bacteria: possible photosynthetic ancestry.
    Woese CR; Debrunner-Vossbrinck BA; Oyaizu H; Stackebrandt E; Ludwig W
    Science; 1985; 229():762-5. PubMed ID: 11539659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition.
    Taib N; Megrian D; Witwinowski J; Adam P; Poppleton D; Borrel G; Beloin C; Gribaldo S
    Nat Ecol Evol; 2020 Dec; 4(12):1661-1672. PubMed ID: 33077930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus.
    Gruber TM; Bryant DA
    Arch Microbiol; 1998 Oct; 170(4):285-96. PubMed ID: 9732443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.