BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16228649)

  • 1. The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism--implications to prebiotic catalysis.
    Fleminger G; Yaron T; Eisenstein M; Bar-Nun A
    Orig Life Evol Biosph; 2005 Aug; 35(4):369-82. PubMed ID: 16228649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-directed formation of small biocatalysts under prebiotic conditions.
    Kochavi E; Bar-Nun A; Fleminger G
    J Mol Evol; 1997 Oct; 45(4):342-51. PubMed ID: 9321413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual substrate/solvent- roles of water and mixed reaction-diffusion control of β-Galactosidase catalyzed reactions in PEG-induced macromolecular crowding conditions.
    Nolan V; Clop PD; Burgos MI; Perillo MA
    Biochem Biophys Res Commun; 2019 Jul; 515(1):190-195. PubMed ID: 31133380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically increased prebiotic peptide formation: ditryptophan, dilysine, and diserine.
    Plankensteiner K; Reiner H; Rode BM
    Orig Life Evol Biosph; 2005 Oct; 35(5):411-9. PubMed ID: 16231205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of enzymes on spongy polyvinyl alcohol cryogels: the example of beta-galactosidase from Aspergillus oryzae.
    Rossi A; Morana A; Lernia ID; Di tombrino A; De Rosa M
    Ital J Biochem; 1999 Jun; 48(2):91-7. PubMed ID: 10434188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Formation of Ser-His Dipeptide via Phosphorus Activation.
    Shu W; Yu Y; Chen S; Yan X; Liu Y; Zhao Y
    Orig Life Evol Biosph; 2018 Jun; 48(2):213-222. PubMed ID: 29705890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is divalent magnesium cation the best cofactor for bacterial β-galactosidase?
    Banerjee G; Ray A; Hasan KN
    J Biosci; 2018 Dec; 43(5):941-945. PubMed ID: 30541954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiotic Formation of Catalytically Active Dipeptides via Trimetaphosphate Activation.
    Chi Y; Li X; Chen Y; Zhang Y; Liu Y; Gao X; Zhao Y
    Chem Asian J; 2022 Dec; 17(24):e202200926. PubMed ID: 36308060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution.
    Weber AL; Pizzarello S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction and general properties of beta-galactosidase and beta-galactoside permease in Pseudomonas BAL-31.
    Hidalgo C; Reyes J; Goldschmidt R
    J Bacteriol; 1977 Feb; 129(2):821-9. PubMed ID: 14111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides.
    Maischberger T; Leitner E; Nitisinprasert S; Juajun O; Yamabhai M; Nguyen TH; Haltrich D
    Biotechnol J; 2010 Aug; 5(8):838-47. PubMed ID: 20669255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactose hydrolysis and formation of galactooligosaccharides by a novel immobilized beta-galactosidase from the thermophilic fungus Talaromyces thermophilus.
    Nakkharat P; Haltrich D
    Appl Biochem Biotechnol; 2006; 129-132():215-25. PubMed ID: 16915641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment.
    White DH; Erickson JC
    J Mol Evol; 1980 Dec; 16(3-4):279-90. PubMed ID: 7205965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value of the O-nitrophenyl-beta-D-galactopyranoside test to differentiate among the aerobic actinomycetes.
    Flores M; Ford EG; Janda JM
    J Clin Microbiol; 1990 Sep; 28(9):2142-4. PubMed ID: 2121796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of kinetic cooperativity in prebiotic catalysts.
    Ricard J; Vergne J; Decout JL; Maurel MC
    J Mol Evol; 1996 Oct; 43(4):315-25. PubMed ID: 8798337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple replacements establish the importance of tyrosine-503 in beta-galactosidase (Escherichia coli).
    Ring M; Huber RE
    Arch Biochem Biophys; 1990 Dec; 283(2):342-50. PubMed ID: 2125820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of the beta-galactosidase of the yeast Kluyveromyces marxianus var. marxianus ATCC 10022.
    Bacci Júnior M; Siqueira CG; Antoniazi SA; Ueta J
    Antonie Van Leeuwenhoek; 1996 May; 69(4):357-61. PubMed ID: 8836433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for beta-galactosidase catalyzed hydrolysis of paranitrophenyl-beta-D-galactopyranoside anchored in cyclodextrins.
    Jyothirmayi N; Ramadoss CS
    Indian J Biochem Biophys; 1993 Aug; 30(4):218-23. PubMed ID: 8276424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides.
    Iqbal S; Nguyen TH; Nguyen TT; Maischberger T; Haltrich D
    Carbohydr Res; 2010 Jul; 345(10):1408-16. PubMed ID: 20385377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.