These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16228985)
21. Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: an experimental investigation. Pye K; Croft D Forensic Sci Int; 2007 Jan; 165(1):52-63. PubMed ID: 16621381 [TBL] [Abstract][Full Text] [Related]
22. Application of atomic force microscopy to the study of natural and model soil particles. Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993 [TBL] [Abstract][Full Text] [Related]
23. Quantifying the Hygroscopic Growth of Individual Submicrometer Particles with Atomic Force Microscopy. Morris HS; Estillore AD; Laskina O; Grassian VH; Tivanski AV Anal Chem; 2016 Apr; 88(7):3647-54. PubMed ID: 26923623 [TBL] [Abstract][Full Text] [Related]
24. Application of 252Cf-PDMS to characterize airborne particles deposited in an Antarctic glacier. da Cunha KD; Evangelista H; Dalia KC; Simões JC; Barros Leite CV Sci Total Environ; 2004 May; 323(1-3):123-35. PubMed ID: 15081722 [TBL] [Abstract][Full Text] [Related]
25. Characterization of pyrotechnic reaction residue particles by SEM/EDS. Kosanke KL; Dujay RC; Kosanke B J Forensic Sci; 2003 May; 48(3):531-7. PubMed ID: 12762523 [TBL] [Abstract][Full Text] [Related]
26. Comparative observation of the recombinant adeno-associated virus 2 using transmission electron microscopy and atomic force microscopy. Chen H Microsc Microanal; 2007 Oct; 13(5):384-9. PubMed ID: 17900390 [TBL] [Abstract][Full Text] [Related]
27. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Kaegi R; Wagner T; Hetzer B; Sinnet B; Tzvetkov G; Boller M Water Res; 2008 May; 42(10-11):2778-86. PubMed ID: 18348895 [TBL] [Abstract][Full Text] [Related]
28. Atomic Force Microscopy Study of Ultrafine Particles Prepared in Reverse Micelles. Sato H; Ohtsu T; Komasawa I J Colloid Interface Sci; 2000 Oct; 230(1):200-204. PubMed ID: 10998306 [TBL] [Abstract][Full Text] [Related]
29. Emerging investigator series: influence of marine emissions and atmospheric processing on individual particle composition of summertime Arctic aerosol over the Bering Strait and Chukchi Sea. Kirpes RM; Rodriguez B; Kim S; China S; Laskin A; Park K; Jung J; Ault AP; Pratt KA Environ Sci Process Impacts; 2020 May; 22(5):1201-1213. PubMed ID: 32083622 [TBL] [Abstract][Full Text] [Related]
30. Elastic modulus measurements from individual lactose particles using atomic force microscopy. Perkins M; Ebbens SJ; Hayes S; Roberts CJ; Madden CE; Luk SY; Patel N Int J Pharm; 2007 Mar; 332(1-2):168-75. PubMed ID: 17074456 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional morphological characterization of optic nerve fibers by atomic force microscopy and by scanning electron microscopy. Melling M; Karimian-Teherani D; Mostler S; Hochmeister S Microsc Microanal; 2005 Aug; 11(4):333-40. PubMed ID: 16079017 [TBL] [Abstract][Full Text] [Related]
32. The use of SIMS and SEM for the characterization of individual particles with a matrix originating from a nuclear weapon. Ranebo Y; Eriksson M; Tamborini G; Niagolova N; Bildstein O; Betti M Microsc Microanal; 2007 Jun; 13(3):179-90. PubMed ID: 17490500 [TBL] [Abstract][Full Text] [Related]
33. The hygroscopic behaviour of individual aerosol particles in nickel refineries as investigated by environmental scanning electron microscopy. Inerle-Hof M; Weinbruch S; Ebert M; Thomassen Y J Environ Monit; 2007 Apr; 9(4):301-6. PubMed ID: 17410304 [TBL] [Abstract][Full Text] [Related]
34. Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica. Fattori I; Becagli S; Bellandi S; Castellano E; Innocenti M; Mannini A; Severi M; Vitale V; Udisti R J Environ Monit; 2005 Dec; 7(12):1265-74. PubMed ID: 16307082 [TBL] [Abstract][Full Text] [Related]
35. Adhesion of spherical polyelectrolyte brushes on mica: an in situ AFM investigation. Gliemann H; Mei Y; Ballauff M; Schimmel T Langmuir; 2006 Aug; 22(17):7254-9. PubMed ID: 16893223 [TBL] [Abstract][Full Text] [Related]
36. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China. Hu T; Lee S; Cao J; Chow JC; Watson JG; Ho K; Ho W; Rong B; An Z Sci Total Environ; 2009 Oct; 407(20):5319-27. PubMed ID: 19640566 [TBL] [Abstract][Full Text] [Related]
37. Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy. Conny JM Environ Sci Technol; 2013 Aug; 47(15):8575-81. PubMed ID: 23763344 [TBL] [Abstract][Full Text] [Related]
38. Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Garland ER; Rosen EP; Clarke LI; Baer T Phys Chem Chem Phys; 2008 Jun; 10(21):3156-61. PubMed ID: 18688381 [TBL] [Abstract][Full Text] [Related]
39. Nanostructure of the neurocentral growth plate: Insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy. Hauge Bünger M; Foss M; Erlacher K; Bruun Hovgaard M; Chevallier J; Langdahl B; Bünger C; Birkedal H; Besenbacher F; Skov Pedersen J Bone; 2006 Sep; 39(3):530-41. PubMed ID: 16769265 [TBL] [Abstract][Full Text] [Related]
40. Characterization of defects and surface structures in microporous materials by HRTEM, HRSEM, and AFM. González G; Stracke W; Lopez Z; Keller U; Ricker A; Reichelt R Microsc Microanal; 2004 Apr; 10(2):224-35. PubMed ID: 15306048 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]