BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

840 related articles for article (PubMed ID: 16229501)

  • 1. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants.
    Moreira L; Firoozabadi A
    Langmuir; 2010 Oct; 26(19):15177-91. PubMed ID: 20809602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 1. Conventional (pH-Insensitive) surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5942-52. PubMed ID: 17444662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic parameters and counterion binding to the micelle in binary anionic surfactant systems.
    Maneedaeng A; Haller KJ; Grady BP; Flood AE
    J Colloid Interface Sci; 2011 Apr; 356(2):598-604. PubMed ID: 21292278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-Insensitive) surfactants: a regular solution theory modeling approach.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Nov; 22(24):9894-904. PubMed ID: 17106978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micelle Formation of Anionic Surfactant with Divalent Counterion of Separate Electric Charge.
    Yamabe T; Moroi Y
    J Colloid Interface Sci; 1999 Jul; 215(1):58-63. PubMed ID: 10362473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent Binding Degree of a Counterion and Micellar Composition in Cationic and Nonionic Surfactant Mixed Solutions at CMC.
    Akisada H
    J Colloid Interface Sci; 2001 Aug; 240(1):323-334. PubMed ID: 11446815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial and self-aggregation of binary mixtures of anionic and nonionic amphiphiles in aqueous medium.
    Ghosh S; Das Burman A; De GC; Das AR
    J Phys Chem B; 2011 Sep; 115(38):11098-112. PubMed ID: 21888317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical micelle concentrations and interaction parameters of aqueous binary surfactant:ionic surfactant mixtures.
    Akisada H; Kuwahara J; Noyori K; Kuba R; Shimooka T; Yamada A
    J Colloid Interface Sci; 2005 Aug; 288(1):238-46. PubMed ID: 15927585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-Angle Neutron Scattering and Fluorescence Studies of Mixed Surfactants with Dodecyl Tails.
    Griffiths PC; Whatton ML; Abbott RJ; Kwan W; Pitt AR; Howe AM; King SM; Heenan RK
    J Colloid Interface Sci; 1999 Jul; 215(1):114-123. PubMed ID: 10362480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterion condensation and release in micellar solutions.
    Hsiao CC; Wang TY; Tsao HK
    J Chem Phys; 2005 Apr; 122(14):144702. PubMed ID: 15847548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.