These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16229598)

  • 1. Entropy factor in the hopping frequency for ionic conduction in oxide glasses induced by energetic clustering.
    Garcia-Belmonte G; Bisquert J
    J Chem Phys; 2005 Aug; 123(7):074504. PubMed ID: 16229598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport in the microporous titanosilicate ETS-10.
    Wei TC; Hillhouse HW
    J Phys Chem B; 2006 Jul; 110(28):13728-33. PubMed ID: 16836317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric spectroscopy of some heteronuclear amino alcohol complexes.
    Masoud MS; Shaker MA; Ali AE
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Sep; 65(1):127-32. PubMed ID: 16458054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous ionic conductivity increase in Li2S + GeS2 + GeO2 glasses.
    Kim Y; Saienga J; Martin SW
    J Phys Chem B; 2006 Aug; 110(33):16318-25. PubMed ID: 16913758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.
    Murugavel S; Vaid C; Bhadram VS; Narayana C
    J Phys Chem B; 2010 Oct; 114(42):13381-5. PubMed ID: 20925353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mixed alkali effect in ionically conducting glasses revisited: a study by molecular dynamics simulation.
    Habasaki J; Ngai KL
    Phys Chem Chem Phys; 2007 Sep; 9(33):4673-89. PubMed ID: 17700869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal nanochannels as the basis of the ionic transport in AgI-based glasses.
    Mustarelli P; Tomasi C; Magistris A
    J Phys Chem B; 2005 Sep; 109(37):17417-21. PubMed ID: 16853226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between conductivity or diffusivity and activation energy in amorphous solids.
    Sharma M; Yashonath S
    J Chem Phys; 2008 Oct; 129(14):144103. PubMed ID: 19045130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearly constant loss effects in borate glasses.
    Laughman DM; Banhatti RD; Funke K
    Phys Chem Chem Phys; 2009 May; 11(17):3158-67. PubMed ID: 19370211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity in 1D and 3D disordered systems.
    Dimakogianni M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355305. PubMed ID: 21403284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cationic energy landscape in alkali silicate glasses: Properties and relevance.
    Lammert H; Banhatti RD; Heuer A
    J Chem Phys; 2009 Dec; 131(22):224708. PubMed ID: 20001077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between the single particle barrier hopping theory and thermodynamic, disordered media, elastic, and jamming models of glassy systems.
    Schweizer KS
    J Chem Phys; 2007 Oct; 127(16):164506. PubMed ID: 17979359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of some random-barrier, continuous-time random-walk, and other models for the analysis of wide-range frequency response of ion-conducting materials.
    Macdonald JR
    J Phys Chem B; 2009 Jul; 113(27):9175-82. PubMed ID: 19526997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of lithium ions in calcium bismuthate glasses.
    Dutta A; Ghosh A
    J Chem Phys; 2005 Jun; 122(23):234510. PubMed ID: 16008465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films.
    Kahouli A; Sylvestre A; Jomni F; Yangui B; Legrand J
    J Phys Chem A; 2012 Jan; 116(3):1051-8. PubMed ID: 22191786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals.
    Choi SH; Risko C; Delgado MC; Kim B; Brédas JL; Frisbie CD
    J Am Chem Soc; 2010 Mar; 132(12):4358-68. PubMed ID: 20218660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple model for ac ionic conduction in solids.
    Bisquert J; Halpern V; Henn F
    J Chem Phys; 2005 Apr; 122(15):151101. PubMed ID: 15945615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical conductivity and relaxation in mixed alkali tellurite glasses.
    Ghosh S; Ghosh A
    J Chem Phys; 2007 May; 126(18):184509. PubMed ID: 17508813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hopping rates and concentrations of mobile fluoride ions in Pb(1-x)Sn(x)F(2) solid solutions.
    Ahmad MM; Yamada K
    J Chem Phys; 2007 Sep; 127(12):124507. PubMed ID: 17902921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced hopping conductivity in low band gap donor-acceptor molecular wires Up to 20 nm in length.
    Choi SH; Frisbie CD
    J Am Chem Soc; 2010 Nov; 132(45):16191-201. PubMed ID: 20973532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.