BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16229901)

  • 41. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases.
    Mori T; Zhang L; Awakawa T; Hoshino S; Okada M; Morita H; Abe I
    Nat Commun; 2016 Mar; 7():10849. PubMed ID: 26952246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prenyltransferases as key enzymes in primary and secondary metabolism.
    Winkelblech J; Fan A; Li SM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7379-97. PubMed ID: 26216239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GuA6DT, a regiospecific prenyltransferase from Glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones.
    Li J; Chen R; Wang R; Liu X; Xie D; Zou J; Dai J
    Chembiochem; 2014 Jul; 15(11):1673-81. PubMed ID: 25044857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3.
    Wong CP; Awakawa T; Nakashima Y; Mori T; Zhu Q; Liu X; Abe I
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):560-563. PubMed ID: 29178634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prenyl transfer to aromatic substrates: genetics and enzymology.
    Heide L
    Curr Opin Chem Biol; 2009 Apr; 13(2):171-9. PubMed ID: 19299193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical characterization of a novel indole prenyltransferase from Streptomyces sp. SN-593.
    Takahashi S; Takagi H; Toyoda A; Uramoto M; Nogawa T; Ueki M; Sakaki Y; Osada H
    J Bacteriol; 2010 Jun; 192(11):2839-51. PubMed ID: 20348259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens.
    Sasaki K; Mito K; Ohara K; Yamamoto H; Yazaki K
    Plant Physiol; 2008 Mar; 146(3):1075-84. PubMed ID: 18218974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products.
    Li SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):631-9. PubMed ID: 19633837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases.
    Yu X; Xie X; Li SM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):737-48. PubMed ID: 21643703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases.
    Sugiyama A; Linley PJ; Sasaki K; Kumano T; Yamamoto H; Shitan N; Ohara K; Takanashi K; Harada E; Hasegawa H; Terakawa T; Kuzuyama T; Yazaki K
    Metab Eng; 2011 Nov; 13(6):629-37. PubMed ID: 21835257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homogeneous purification and characterization of LePGT1--a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon.
    Ohara K; Mito K; Yazaki K
    FEBS J; 2013 Jun; 280(11):2572-80. PubMed ID: 23490165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity.
    Jost M; Zocher G; Tarcz S; Matuschek M; Xie X; Li SM; Stehle T
    J Am Chem Soc; 2010 Dec; 132(50):17849-58. PubMed ID: 21105662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1.
    Unsöld IA; Li SM
    Chembiochem; 2006 Jan; 7(1):158-64. PubMed ID: 16397874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate-Dependent Alteration in the C- and O-Prenylation Specificities of Cannabis Prenyltransferase.
    Tanaya R; Kodama T; Maneenet J; Yasuno Y; Nakayama A; Shinada T; Takahashi H; Ito T; Morita H; Awale S; Taura F
    Biol Pharm Bull; 2024; 47(2):449-453. PubMed ID: 38369346
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Breaking cyclic dipeptide prenyltransferase regioselectivity by unnatural alkyl donors.
    Liebhold M; Xie X; Li SM
    Org Lett; 2013 Jun; 15(12):3062-5. PubMed ID: 23721375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
    Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione.
    Ni W; Zheng Z; Liu H; Wang P; Wang H; Sun X; Yang Q; Fang Z; Tang H; Zhao G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4371-4382. PubMed ID: 32125480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure, catalysis, and inhibition mechanism of prenyltransferase.
    Chang HY; Cheng TH; Wang AH
    IUBMB Life; 2021 Jan; 73(1):40-63. PubMed ID: 33246356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology.
    Fan A; Winkelblech J; Li SM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7399-415. PubMed ID: 26227408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reprogramming Substrate and Catalytic Promiscuity of Tryptophan Prenyltransferases.
    Ostertag E; Zheng L; Broger K; Stehle T; Li SM; Zocher G
    J Mol Biol; 2021 Jan; 433(2):166726. PubMed ID: 33249189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.