These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 16229963)
1. Mitochondria: oxygen sinks rather than sensors? Wenger RH Med Hypotheses; 2006; 66(2):380-3. PubMed ID: 16229963 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Bell EL; Chandel NS Essays Biochem; 2007; 43():17-27. PubMed ID: 17705790 [TBL] [Abstract][Full Text] [Related]
3. Genetics of mitochondrial electron transport chain in regulating oxygen sensing. Bell EL; Chandel NS Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068 [TBL] [Abstract][Full Text] [Related]
4. Redox regulation of the hypoxia-inducible factor. Pouysségur J; Mechta-Grigoriou F Biol Chem; 2006; 387(10-11):1337-46. PubMed ID: 17081104 [TBL] [Abstract][Full Text] [Related]
5. Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors. Görlach A; Kietzmann T Methods Enzymol; 2007; 435():421-46. PubMed ID: 17998067 [TBL] [Abstract][Full Text] [Related]
8. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Jung SN; Yang WK; Kim J; Kim HS; Kim EJ; Yun H; Park H; Kim SS; Choe W; Kang I; Ha J Carcinogenesis; 2008 Apr; 29(4):713-21. PubMed ID: 18258605 [TBL] [Abstract][Full Text] [Related]
9. Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development. Martínez-Sánchez G; Giuliani A J Exp Clin Cancer Res; 2007 Mar; 26(1):39-50. PubMed ID: 17550131 [TBL] [Abstract][Full Text] [Related]
15. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Benani A; Troy S; Carmona MC; Fioramonti X; Lorsignol A; Leloup C; Casteilla L; Pénicaud L Diabetes; 2007 Jan; 56(1):152-60. PubMed ID: 17192477 [TBL] [Abstract][Full Text] [Related]
16. Regulation of HIF: asparaginyl hydroxylation. Peet D; Linke S Novartis Found Symp; 2006; 272():37-49; discussion 49-53, 131-40. PubMed ID: 16686428 [TBL] [Abstract][Full Text] [Related]
17. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria. Khawaja NR; Carré M; Kovacic H; Estève MA; Braguer D Mol Pharmacol; 2008 Oct; 74(4):1072-83. PubMed ID: 18593821 [TBL] [Abstract][Full Text] [Related]
18. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system. Archer SL; Michelakis ED; Thébaud B; Bonnet S; Moudgil R; Wu XC; Weir EK Novartis Found Symp; 2006; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435 [TBL] [Abstract][Full Text] [Related]
19. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria. Liu H; Wang T; Huang K Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293 [TBL] [Abstract][Full Text] [Related]
20. Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia. McGowan JE; Chen L; Gao D; Trush M; Wei C Neurosci Lett; 2006 May; 399(1-2):111-4. PubMed ID: 16490311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]