These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 16229963)

  • 1. Mitochondria: oxygen sinks rather than sensors?
    Wenger RH
    Med Hypotheses; 2006; 66(2):380-3. PubMed ID: 16229963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species.
    Bell EL; Chandel NS
    Essays Biochem; 2007; 43():17-27. PubMed ID: 17705790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of mitochondrial electron transport chain in regulating oxygen sensing.
    Bell EL; Chandel NS
    Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of the hypoxia-inducible factor.
    Pouysségur J; Mechta-Grigoriou F
    Biol Chem; 2006; 387(10-11):1337-46. PubMed ID: 17081104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors.
    Görlach A; Kietzmann T
    Methods Enzymol; 2007; 435():421-46. PubMed ID: 17998067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.
    Semenza GL
    Biochem J; 2007 Jul; 405(1):1-9. PubMed ID: 17555402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization.
    Köhl R; Zhou J; Brüne B
    Free Radic Biol Med; 2006 Apr; 40(8):1430-42. PubMed ID: 16631533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells.
    Jung SN; Yang WK; Kim J; Kim HS; Kim EJ; Yun H; Park H; Kim SS; Choe W; Kang I; Ha J
    Carcinogenesis; 2008 Apr; 29(4):713-21. PubMed ID: 18258605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development.
    Martínez-Sánchez G; Giuliani A
    J Exp Clin Cancer Res; 2007 Mar; 26(1):39-50. PubMed ID: 17550131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species facilitate oxygen sensing.
    Prabhakar NR; Peng YJ; Yuan G; Kumar GK
    Novartis Found Symp; 2006; 272():95-9; discussion 100-5, 131-40. PubMed ID: 16686431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: behaviour of endothelial cells faced with hypoxia.
    Paternotte E; Gaucher C; Labrude P; Stoltz JF; Menu P
    Biomed Mater Eng; 2008; 18(4-5):295-9. PubMed ID: 19065037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An oxygen molecular sensor, the HIF prolyl 4-hydroxylase, in the marine protist Perkinsus olseni.
    Leite RB; Brito AB; Cancela ML
    Protist; 2008 Jul; 159(3):355-68. PubMed ID: 18539525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular basis for diverse responses to oxygen.
    Chandel NS; Budinger GR
    Free Radic Biol Med; 2007 Jan; 42(2):165-74. PubMed ID: 17189822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-sensing in tumors.
    Verma A
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):366-78. PubMed ID: 16778564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake.
    Benani A; Troy S; Carmona MC; Fioramonti X; Lorsignol A; Leloup C; Casteilla L; Pénicaud L
    Diabetes; 2007 Jan; 56(1):152-60. PubMed ID: 17192477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of HIF: asparaginyl hydroxylation.
    Peet D; Linke S
    Novartis Found Symp; 2006; 272():37-49; discussion 49-53, 131-40. PubMed ID: 16686428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria.
    Khawaja NR; Carré M; Kovacic H; Estève MA; Braguer D
    Mol Pharmacol; 2008 Oct; 74(4):1072-83. PubMed ID: 18593821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.
    Archer SL; Michelakis ED; Thébaud B; Bonnet S; Moudgil R; Wu XC; Weir EK
    Novartis Found Symp; 2006; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria.
    Liu H; Wang T; Huang K
    Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia.
    McGowan JE; Chen L; Gao D; Trush M; Wei C
    Neurosci Lett; 2006 May; 399(1-2):111-4. PubMed ID: 16490311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.