These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 16230009)
1. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites. Gopal M; Gupta A; Thomas GV Bioresour Technol; 2006 Oct; 97(15):1801-6. PubMed ID: 16230009 [TBL] [Abstract][Full Text] [Related]
2. The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). Huger AM J Invertebr Pathol; 2005 May; 89(1):78-84. PubMed ID: 16039308 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of Metarhizium anisopliae and Entomopathogenic Nematodes to Control Oryctes rhinoceros Larvae in the Rainy Season. Indriyanti DR; Widiyaningrum P; Haryuni ; Slamet M; Maretta YA Pak J Biol Sci; 2017; 20(7):320-327. PubMed ID: 29023063 [TBL] [Abstract][Full Text] [Related]
4. Biology and management of palm dynastid beetles: recent advances. Bedford GO Annu Rev Entomol; 2013; 58():353-72. PubMed ID: 23317044 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Metarhizium anisopliae (Metsch) Sorok. to target larvae and adults of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae) in soil and fiber band applications. Marannino P; Santiago-Alvarez C; de Lillo E; Quesada-Moraga E J Invertebr Pathol; 2008 Mar; 97(3):237-44. PubMed ID: 17961589 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms. Chakravarthy AK; Chandrashekharaiah M; Kandakoor SB; Nagaraj DN J Environ Biol; 2014 May; 35(3):479-84. PubMed ID: 24813002 [TBL] [Abstract][Full Text] [Related]
7. [Biological characteristics of Metarhizium anisopliae var. major and its virulence to white grubs]. Lin H; Li S; Zhang L; Wang P; Zhou Y Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):351-3. PubMed ID: 16706069 [TBL] [Abstract][Full Text] [Related]
8. Laboratory bioassays of entomopathogenic fungi for control of Delia radicum (L.) larvae. Bruck DJ; Snelling JE; Dreves AJ; Jaronski ST J Invertebr Pathol; 2005 Jun; 89(2):179-83. PubMed ID: 16087004 [TBL] [Abstract][Full Text] [Related]
9. Characterization and screening of new Metarhizium isolates to control the coconut rhinoceros beetle in the Pacific islands. Villamizar LF; Barrera GP; Luange A; Sagata K; Gende P; Chris S; Tsatsia H; Mudu F; Weston M; van Koten C; Mansfield S; Jackson TA; Marshall SDG Fungal Biol; 2024 Nov; 128(7):2127-2138. PubMed ID: 39384282 [TBL] [Abstract][Full Text] [Related]
10. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Jackson MA; Jaronski ST Mycol Res; 2009 Aug; 113(Pt 8):842-50. PubMed ID: 19358886 [TBL] [Abstract][Full Text] [Related]
11. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Hussain A; Ahmed S; Shahid M Neotrop Entomol; 2011; 40(2):244-50. PubMed ID: 21584407 [TBL] [Abstract][Full Text] [Related]
12. Selection of a highly virulent fungal isolate, Metarhizium anisopliae CLO 53, for controlling Hoplia philanthus. Ansari MA; Vestergaard S; Tirry L; Moens M J Invertebr Pathol; 2004 Feb; 85(2):89-96. PubMed ID: 15050838 [TBL] [Abstract][Full Text] [Related]
13. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory. Shapiro-Ilan DI; Cottrell TE; Jackson MA; Wood BW J Invertebr Pathol; 2008 Nov; 99(3):312-7. PubMed ID: 18675272 [TBL] [Abstract][Full Text] [Related]
14. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. Scholte EJ; Knols BG; Takken W J Invertebr Pathol; 2006 Jan; 91(1):43-9. PubMed ID: 16376375 [TBL] [Abstract][Full Text] [Related]
15. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Scholte EJ; Takken W; Knols BG Acta Trop; 2007 Jun; 102(3):151-8. PubMed ID: 17544354 [TBL] [Abstract][Full Text] [Related]
16. Studies on adaptations of Metarhizium anisopliae to life in the soil. St Leger RJ J Invertebr Pathol; 2008 Jul; 98(3):271-6. PubMed ID: 18430436 [TBL] [Abstract][Full Text] [Related]
17. Dataset of Arvind K; Rajesh MK; Josephrajkumar A; Grace T Data Brief; 2020 Feb; 28():105036. PubMed ID: 31921949 [TBL] [Abstract][Full Text] [Related]
18. Composting-vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Gajalakshmi S; Ramasamy EV; Abbasi SA Bioresour Technol; 2005 Jun; 96(9):1057-61. PubMed ID: 15668202 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility of Culicoides biting midge larvae to the insect-pathogenic fungus, Metarhizium anisopliae: prospects for bluetongue vector control. Ansari MA; Carpenter S; Butt TM Acta Trop; 2010 Jan; 113(1):1-6. PubMed ID: 19703405 [TBL] [Abstract][Full Text] [Related]
20. Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Gopal M; Bhute SS; Gupta A; Prabhu SR; Thomas GV; Whitman WB; Jangid K Antonie Van Leeuwenhoek; 2017 Oct; 110(10):1339-1355. PubMed ID: 28597254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]