BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16230009)

  • 1. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.
    Gopal M; Gupta A; Thomas GV
    Bioresour Technol; 2006 Oct; 97(15):1801-6. PubMed ID: 16230009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae).
    Huger AM
    J Invertebr Pathol; 2005 May; 89(1):78-84. PubMed ID: 16039308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of Metarhizium anisopliae and Entomopathogenic Nematodes to Control Oryctes rhinoceros Larvae in the Rainy Season.
    Indriyanti DR; Widiyaningrum P; Haryuni ; Slamet M; Maretta YA
    Pak J Biol Sci; 2017; 20(7):320-327. PubMed ID: 29023063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biology and management of palm dynastid beetles: recent advances.
    Bedford GO
    Annu Rev Entomol; 2013; 58():353-72. PubMed ID: 23317044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Metarhizium anisopliae (Metsch) Sorok. to target larvae and adults of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae) in soil and fiber band applications.
    Marannino P; Santiago-Alvarez C; de Lillo E; Quesada-Moraga E
    J Invertebr Pathol; 2008 Mar; 97(3):237-44. PubMed ID: 17961589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.
    Chakravarthy AK; Chandrashekharaiah M; Kandakoor SB; Nagaraj DN
    J Environ Biol; 2014 May; 35(3):479-84. PubMed ID: 24813002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biological characteristics of Metarhizium anisopliae var. major and its virulence to white grubs].
    Lin H; Li S; Zhang L; Wang P; Zhou Y
    Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):351-3. PubMed ID: 16706069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory bioassays of entomopathogenic fungi for control of Delia radicum (L.) larvae.
    Bruck DJ; Snelling JE; Dreves AJ; Jaronski ST
    J Invertebr Pathol; 2005 Jun; 89(2):179-83. PubMed ID: 16087004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects.
    Jackson MA; Jaronski ST
    Mycol Res; 2009 Aug; 113(Pt 8):842-50. PubMed ID: 19358886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites.
    Hussain A; Ahmed S; Shahid M
    Neotrop Entomol; 2011; 40(2):244-50. PubMed ID: 21584407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of a highly virulent fungal isolate, Metarhizium anisopliae CLO 53, for controlling Hoplia philanthus.
    Ansari MA; Vestergaard S; Tirry L; Moens M
    J Invertebr Pathol; 2004 Feb; 85(2):89-96. PubMed ID: 15050838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.
    Shapiro-Ilan DI; Cottrell TE; Jackson MA; Wood BW
    J Invertebr Pathol; 2008 Nov; 99(3):312-7. PubMed ID: 18675272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity.
    Scholte EJ; Knols BG; Takken W
    J Invertebr Pathol; 2006 Jan; 91(1):43-9. PubMed ID: 16376375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae.
    Scholte EJ; Takken W; Knols BG
    Acta Trop; 2007 Jun; 102(3):151-8. PubMed ID: 17544354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on adaptations of Metarhizium anisopliae to life in the soil.
    St Leger RJ
    J Invertebr Pathol; 2008 Jul; 98(3):271-6. PubMed ID: 18430436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dataset of
    Arvind K; Rajesh MK; Josephrajkumar A; Grace T
    Data Brief; 2020 Feb; 28():105036. PubMed ID: 31921949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composting-vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica).
    Gajalakshmi S; Ramasamy EV; Abbasi SA
    Bioresour Technol; 2005 Jun; 96(9):1057-61. PubMed ID: 15668202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of Culicoides biting midge larvae to the insect-pathogenic fungus, Metarhizium anisopliae: prospects for bluetongue vector control.
    Ansari MA; Carpenter S; Butt TM
    Acta Trop; 2010 Jan; 113(1):1-6. PubMed ID: 19703405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in structure and function of bacterial communities during coconut leaf vermicomposting.
    Gopal M; Bhute SS; Gupta A; Prabhu SR; Thomas GV; Whitman WB; Jangid K
    Antonie Van Leeuwenhoek; 2017 Oct; 110(10):1339-1355. PubMed ID: 28597254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Host Immune Responses of Different Geographical Populations of the Coconut Rhinoceros Beetle to Oryctes Rhinoceros Nudivirus (OrNV) Infection.
    Etebari K; Gharuka M; Asgari S; Furlong MJ
    Microbiol Spectr; 2021 Oct; 9(2):e0068621. PubMed ID: 34523987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.