These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16230053)

  • 1. Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases.
    Loh E; Loeb LA
    DNA Repair (Amst); 2005 Dec; 4(12):1390-8. PubMed ID: 16230053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity.
    Werneburg BG; Ahn J; Zhong X; Hondal RJ; Kraynov VS; Tsai MD
    Biochemistry; 1996 Jun; 35(22):7041-50. PubMed ID: 8679529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.
    Melissis S; Labrou NE; Clonis YD
    J Chromatogr A; 2006 Jul; 1122(1-2):63-75. PubMed ID: 16712859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of thermus aquaticus DNA polymerase.
    Strerath M; Gloeckner C; Liu D; Schnur A; Marx A
    Chembiochem; 2007 Mar; 8(4):395-401. PubMed ID: 17279590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prokaryotic DNA polymerase I: evolution, structure, and "base flipping" mechanism for nucleotide selection.
    Patel PH; Suzuki M; Adman E; Shinkai A; Loeb LA
    J Mol Biol; 2001 May; 308(5):823-37. PubMed ID: 11352575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I.
    Di Pasquale F; Fischer D; Grohmann D; Restle T; Geyer A; Marx A
    J Am Chem Soc; 2008 Aug; 130(32):10748-57. PubMed ID: 18627154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis.
    Turner RM; Grindley ND; Joyce CM
    Biochemistry; 2003 Mar; 42(8):2373-85. PubMed ID: 12600204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified kinetic mechanism applicable to multiple DNA polymerases.
    Bakhtina M; Roettger MP; Kumar S; Tsai MD
    Biochemistry; 2007 May; 46(18):5463-72. PubMed ID: 17419590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.
    Johnson SJ; Taylor JS; Beese LS
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3895-900. PubMed ID: 12649320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic amino acid and single-atom substitutions increase DNA polymerase selectivity.
    Rudinger NZ; Kranaster R; Marx A
    Chem Biol; 2007 Feb; 14(2):185-94. PubMed ID: 17317572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new DNA polymerase I from Geobacillus caldoxylosilyticus TK4: cloning, characterization, and mutational analysis of two aromatic residues.
    Sandalli C; Singh K; Modak MJ; Ketkar A; Canakci S; Demir I; Belduz AO
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):105-17. PubMed ID: 19365630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. phi29 DNA polymerase-terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerases.
    Rodríguez I; Lázaro JM; Salas M; De Vega M
    J Mol Biol; 2004 Apr; 337(4):829-41. PubMed ID: 15033354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I.
    Graham SE; Syeda F; Cisneros GA
    Biochemistry; 2012 Mar; 51(12):2569-78. PubMed ID: 22397306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and translesion replication.
    García-Ortiz MV; Roldán-Arjona T; Ariza RR
    FEBS J; 2007 Jul; 274(13):3340-50. PubMed ID: 17550419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the effect of DNA polymerase mutations on transition-state energetics and fidelity: evaluating amino acid group contribution and allosteric coupling for ionized residues in human pol beta.
    Xiang Y; Oelschlaeger P; Florián J; Goodman MF; Warshel A
    Biochemistry; 2006 Jun; 45(23):7036-48. PubMed ID: 16752894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens.
    Matsui K; Yamada M; Imai M; Yamamoto K; Nohmi T
    DNA Repair (Amst); 2006 Apr; 5(4):465-78. PubMed ID: 16455311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.