These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 16231011)
1. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Webster RG; Brain KL; Wilson RH; Grem JL; Vincent A Br J Pharmacol; 2005 Dec; 146(7):1027-39. PubMed ID: 16231011 [TBL] [Abstract][Full Text] [Related]
2. The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Adelsberger H; Quasthoff S; Grosskreutz J; Lepier A; Eckel F; Lersch C Eur J Pharmacol; 2000 Oct; 406(1):25-32. PubMed ID: 11011028 [TBL] [Abstract][Full Text] [Related]
3. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. Grolleau F; Gamelin L; Boisdron-Celle M; Lapied B; Pelhate M; Gamelin E J Neurophysiol; 2001 May; 85(5):2293-7. PubMed ID: 11353042 [TBL] [Abstract][Full Text] [Related]
4. A new conotoxin isolated from Conus consors venom acting selectively on axons and motor nerve terminals through a Na+-dependent mechanism. Le Gall F; Favreau P; Benoit E; Mattei C; Bouet F; Menou JL; Ménez A; Letourneux Y; Molgó J Eur J Neurosci; 1999 Sep; 11(9):3134-42. PubMed ID: 10510177 [TBL] [Abstract][Full Text] [Related]
5. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Sittl R; Lampert A; Huth T; Schuy ET; Link AS; Fleckenstein J; Alzheimer C; Grafe P; Carr RW Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6704-9. PubMed ID: 22493249 [TBL] [Abstract][Full Text] [Related]
6. Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction. Silinsky EM J Physiol; 2004 Jul; 558(Pt 2):389-401. PubMed ID: 15146054 [TBL] [Abstract][Full Text] [Related]
7. Effects of methylmercury on perineurial Na+ and Ca(2+)-dependent potentials at neuromuscular junctions of the mouse. Shafer TJ; Atchison WD Brain Res; 1992 Nov; 595(2):215-9. PubMed ID: 1334771 [TBL] [Abstract][Full Text] [Related]
8. Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures. Gamelin E; Gamelin L; Bossi L; Quasthoff S Semin Oncol; 2002 Oct; 29(5 Suppl 15):21-33. PubMed ID: 12422305 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. Hillsley K; Lin JH; Stanisz A; Grundy D; Aerssens J; Peeters PJ; Moechars D; Coulie B; Stead RH J Physiol; 2006 Oct; 576(Pt 1):257-67. PubMed ID: 16857712 [TBL] [Abstract][Full Text] [Related]
10. K+ and Ca2+ channel blocking agents increase or decrease stimulus-evoked but not spontaneous quantal transmitter release in sympathetic nerve terminals. Stjärne L; Msghina M; Stjärne E Acta Physiol Scand; 1990 Feb; 138(2):235-7. PubMed ID: 2156406 [No Abstract] [Full Text] [Related]
11. Enhancement of axonal potassium conductance reduces nerve hyperexcitability in an in vitro model of oxaliplatin-induced acute neuropathy. Sittl R; Carr RW; Fleckenstein J; Grafe P Neurotoxicology; 2010 Dec; 31(6):694-700. PubMed ID: 20670646 [TBL] [Abstract][Full Text] [Related]
12. Nerve growth factor regulates sodium but not potassium channel currents in sympathetic B neurons of adult bullfrogs. Lei S; Dryden WF; Smith PA J Neurophysiol; 2001 Aug; 86(2):641-50. PubMed ID: 11495939 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of the actions of oxaliplatin on ion currents and action potentials in differentiated NG108-15 neuronal cells. Wu SN; Chen BS; Wu YH; Peng H; Chen LT Neurotoxicology; 2009 Jul; 30(4):677-85. PubMed ID: 19422847 [TBL] [Abstract][Full Text] [Related]
14. Etomidate evokes synaptic vesicle exocytosis without increasing miniature endplate potentials frequency at the mice neuromuscular junction. Valadão PA; Naves LA; Gomez RS; Guatimosim C Neurochem Int; 2013 Nov; 63(6):576-82. PubMed ID: 24044896 [TBL] [Abstract][Full Text] [Related]
15. Use of mu-conotoxin GIIIA for the study of synaptic transmission at the frog neuromuscular junction. Sosa MA; Zengel JE Neurosci Lett; 1993 Jul; 157(2):235-8. PubMed ID: 8233060 [TBL] [Abstract][Full Text] [Related]
16. The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat. Kagiava A; Tsingotjidou A; Emmanouilides C; Theophilidis G Neurotoxicology; 2008 Nov; 29(6):1100-6. PubMed ID: 18845186 [TBL] [Abstract][Full Text] [Related]
17. Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium. Braga MF; Anderson AJ; Harvey AL; Rowan EG Br J Pharmacol; 1992 May; 106(1):91-4. PubMed ID: 1324070 [TBL] [Abstract][Full Text] [Related]
18. An electrophysiological analysis of the effect of Ca ions on neuromuscular transmission in the mouse vas deferens. Bennett MR; Florin T Br J Pharmacol; 1975 Sep; 55(1):97-104. PubMed ID: 171018 [TBL] [Abstract][Full Text] [Related]
19. Effect of brevetoxin-B on the neuromuscular transmission of the mouse diaphragm. Tsai MC; Chou HN; Chen ML J Formos Med Assoc; 1991 May; 90(5):431-6. PubMed ID: 1680978 [TBL] [Abstract][Full Text] [Related]
20. Oxaliplatin, an anticancer agent that affects both Na+ and K+ channels in frog peripheral myelinated axons. Benoit E; Brienza S; Dubois JM Gen Physiol Biophys; 2006 Sep; 25(3):263-76. PubMed ID: 17197725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]