These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1623125)

  • 1. Normal mode refinement: crystallographic refinement of protein dynamic structure applied to human lysozyme.
    Kidera A; Inaka K; Matsushima M; Go N
    Biopolymers; 1992 Apr; 32(4):315-9. PubMed ID: 1623125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic structure of human lysozyme derived from X-ray crystallography: normal mode refinement.
    Kidera A; Matsushima M; Go N
    Biophys Chem; 1994 May; 50(1-2):25-31. PubMed ID: 8011937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data.
    Kidera A; Go N
    J Mol Biol; 1992 May; 225(2):457-75. PubMed ID: 1593630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal mode refinement: crystallographic refinement of protein dynamic structure. II. Application to human lysozyme.
    Kidera A; Inaka K; Matsushima M; Go N
    J Mol Biol; 1992 May; 225(2):477-86. PubMed ID: 1593631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors.
    Joti Y; Nakasako M; Kidera A; Go N
    Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1421-32. PubMed ID: 12198298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinement of protein dynamic structure: normal mode refinement.
    Kidera A; Go N
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3718-22. PubMed ID: 2339115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme.
    Horiuchi T; Go N
    Proteins; 1991; 10(2):106-16. PubMed ID: 1896424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local dynamic amplitudes on the protein backbone from dipolar couplings: toward the elucidation of slower motions in biomolecules.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Jun; 126(25):7760-1. PubMed ID: 15212507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On deriving spatial protein structure from NMR or X-ray diffraction data.
    van Gunsteren WF; Gros P; Torda AE; Berendsen HJ; van Schaik RC
    Ciba Found Symp; 1991; 161():150-9; discussion 159-66. PubMed ID: 1814692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective motions in proteins investigated by X-ray diffuse scattering.
    Mizuguchi K; Kidera A; Go N
    Proteins; 1994 Jan; 18(1):34-48. PubMed ID: 8146121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of various humidity on local dynamic structure of lysozyme in a spin-labeled tetragonal crystal].
    Artiukh RI; Kachalova GS; Lanina NF; Nikol'skiĭ DO; Timofeev VP; Bartunik KhD
    Biofizika; 2002; 47(5):795-805. PubMed ID: 12397948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR.
    Goto NK; Skrynnikov NR; Dahlquist FW; Kay LE
    J Mol Biol; 2001 May; 308(4):745-64. PubMed ID: 11350172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex.
    Sutcliffe MJ; Dobson CM
    Proteins; 1991; 10(2):117-29. PubMed ID: 1896425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations.
    Hünenberger PH; Mark AE; van Gunsteren WF
    J Mol Biol; 1995 Sep; 252(4):492-503. PubMed ID: 7563068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural flexibility in proteins: impact of the crystal environment.
    Hinsen K
    Bioinformatics; 2008 Feb; 24(4):521-8. PubMed ID: 18089618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchrotron X-ray powder diffraction study of hexagonal turkey egg-white lysozyme.
    Margiolaki I; Wright JP; Fitch AN; Fox GC; Von Dreele RB
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):423-32. PubMed ID: 15805597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic dissection of the thermal motion of protein-sugar complex.
    Harata K; Kanai R
    Proteins; 2002 Jul; 48(1):53-62. PubMed ID: 12012337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal mode analysis of human lysozyme: study of the relative motion of the two domains and characterization of the harmonic motion.
    Gibrat JF; Go N
    Proteins; 1990; 8(3):258-79. PubMed ID: 2281087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.