These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 1623130)
1. Conformational study of endothelins and sarafotoxins with the cystine-stabilized helical motif by means of CD spectra. Tamaoki H; Kyogoku Y; Nakajima K; Sakakibara S; Hayashi M; Kobayashi Y Biopolymers; 1992 Apr; 32(4):353-7. PubMed ID: 1623130 [TBL] [Abstract][Full Text] [Related]
2. The development of potent peptide agonists and antagonists for the endothelin receptors. Cody WL; Doherty AM Biopolymers; 1995; 37(2):89-104. PubMed ID: 7893949 [TBL] [Abstract][Full Text] [Related]
3. Conformational stability of the endothelin/sarafotoxin family of peptides. Atkins AR; Ralston GB; Smith R Int J Pept Protein Res; 1994 Oct; 44(4):372-7. PubMed ID: 7875940 [TBL] [Abstract][Full Text] [Related]
4. Formation of native disulfide bonds in endothelin-1. Structural evidence for the involvement of a highly specific salt bridge between the prosequence and the endothelin-1 sequence. Aumelas A; Kubo S; Chino N; Chiche L; Forest E; Roumestand C; Kobayashi Y Biochemistry; 1998 Apr; 37(15):5220-30. PubMed ID: 9548753 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis, and conformation of a model peptide of endothelin with cystine-stabilized alpha-helix motif. Mihara H; Tomizaki KY; Nishino N; Fujimoto T; Tamaoki H; Kobayashi Y Biopolymers; 1994 Jul; 34(7):963-7. PubMed ID: 8054474 [TBL] [Abstract][Full Text] [Related]
6. The cystine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Kobayashi Y; Takashima H; Tamaoki H; Kyogoku Y; Lambert P; Kuroda H; Chino N; Watanabe TX; Kimura T; Sakakibara S Biopolymers; 1991 Sep; 31(10):1213-20. PubMed ID: 1724185 [TBL] [Abstract][Full Text] [Related]
7. Truncated analogues of endothelin and sarafotoxin are selective for the ETB receptor subtype. Heyl DL; Cody WL; He JX; Flynn MA; Welch KM; Reynolds EE; Doherty AM Pept Res; 1993; 6(5):238-41. PubMed ID: 8257799 [TBL] [Abstract][Full Text] [Related]
8. Structure-receptor binding relationships of sarafotoxin and endothelin in porcine cardiovascular tissues. Takasaki C; Aimoto S; Takayanagi R; Ohashi M; Nawata H Biochem Int; 1990 Sep; 21(6):1059-64. PubMed ID: 2080920 [TBL] [Abstract][Full Text] [Related]
9. Long-sarafotoxins: characterization of a new family of endothelin-like peptides. Hayashi MA; Ligny-Lemaire C; Wollberg Z; Wery M; Galat A; Ogawa T; Muller BH; Lamthanh H; Doljansky Y; Bdolah A; Stöcklin R; Ducancel F Peptides; 2004 Aug; 25(8):1243-51. PubMed ID: 15350691 [TBL] [Abstract][Full Text] [Related]
11. 1H NMR studies of sarafotoxin SRTb, a nonselective endothelin receptor agonist, and IRL 1620, an ETB receptor-specific agonist. Atkins AR; Martin RC; Smith R Biochemistry; 1995 Feb; 34(6):2026-33. PubMed ID: 7849060 [TBL] [Abstract][Full Text] [Related]
12. Evolution of the sarafotoxin/endothelin superfamily of proteins. Landan G; Bdolah A; Wollberg Z; Kochva E; Graur D Toxicon; 1991; 29(2):237-44. PubMed ID: 2048141 [TBL] [Abstract][Full Text] [Related]
13. The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b, composed of the endothelin pro-sequence and sarafotoxin, retains the salt-bridge staple between Arg(-1) and Asp8 previously observed in [Lys(-2)-Arg(-1)]-endothelin. Implications of this salt-bridge in the contractile activity and the oxidative folding reaction. Aumelas A; Chiche L; Kubo S; Chino N; Watanabe TX; Kobayashi Y Eur J Biochem; 1999 Dec; 266(3):977-85. PubMed ID: 10583392 [TBL] [Abstract][Full Text] [Related]
14. Endothelins and sarafotoxins: physiological regulation, receptor subtypes and transmembrane signaling. Sokolovsky M Trends Biochem Sci; 1991 Jul; 16(7):261-4. PubMed ID: 1656557 [TBL] [Abstract][Full Text] [Related]
15. Sarafotoxins and endothelins: evolution, structure and function. Kochva E; Bdolah A; Wollberg Z Toxicon; 1993 May; 31(5):541-68. PubMed ID: 8332988 [TBL] [Abstract][Full Text] [Related]
16. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor. Liu Y; Breslauer K; Anderson S Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914 [TBL] [Abstract][Full Text] [Related]
17. Characterization of toxins within crude venoms by combined use of Fourier transform mass spectrometry and cloning. Quinton L; Le Caer JP; Phan G; Ligny-Lemaire C; Bourdais-Jomaron J; Ducancel F; Chamot-Rooke J Anal Chem; 2005 Oct; 77(20):6630-9. PubMed ID: 16223250 [TBL] [Abstract][Full Text] [Related]
18. [Lys(-2)-Arg(-1)]endothelin-1 solution structure by two-dimensional 1H-NMR: possible involvement of electrostatic interactions in native disulfide bridge formation and in biological activity decrease. Aumelas A; Chiche L; Kubo S; Chino N; Tamaoki H; Kobayashi Y Biochemistry; 1995 Apr; 34(14):4546-61. PubMed ID: 7718556 [TBL] [Abstract][Full Text] [Related]
19. Folding motifs induced and stabilized by distinct cystine frameworks. Tamaoki H; Miura R; Kusunoki M; Kyogoku Y; Kobayashi Y; Moroder L Protein Eng; 1998 Aug; 11(8):649-59. PubMed ID: 9749917 [TBL] [Abstract][Full Text] [Related]
20. Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability. Heitz A; Le-Nguyen D; Chiche L Biochemistry; 1999 Aug; 38(32):10615-25. PubMed ID: 10441159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]