These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 16231883)
1. The reactant state for substrate-activated turnover of acetylthiocholine by butyrylcholinesterase is a tetrahedral intermediate. Tormos JR; Wiley KL; Seravalli J; Nachon F; Masson P; Nicolet Y; Quinn DM J Am Chem Soc; 2005 Oct; 127(42):14538-9. PubMed ID: 16231883 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of tetrahedral intermediates in cholinesterase catalysis: a secondary isotope effect study. Tormos JR; Wiley KL; Wang Y; Fournier D; Masson P; Nachon F; Quinn DM J Am Chem Soc; 2010 Dec; 132(50):17751-9. PubMed ID: 21105647 [TBL] [Abstract][Full Text] [Related]
3. A secondary isotope effect study of equine serum butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine. Wiley KL; Tormos JR; Quinn DM Chem Biol Interact; 2010 Sep; 187(1-3):124-7. PubMed ID: 20493178 [TBL] [Abstract][Full Text] [Related]
4. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Adediran SA; Pratt RF Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012 [TBL] [Abstract][Full Text] [Related]
6. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine. Chen X; Fang L; Liu J; Zhan CG Biochemistry; 2012 Feb; 51(6):1297-305. PubMed ID: 22304234 [TBL] [Abstract][Full Text] [Related]
7. An investigation into the butyrylcholinesterase-catalyzed hydrolysis of formylthiocholine using heavy atom kinetic isotope effects. Fogle EJ; Marlier JF; Stillman A; Gao X; Rao Y; Robins LI Bioorg Chem; 2016 Apr; 65():57-60. PubMed ID: 26874343 [TBL] [Abstract][Full Text] [Related]
8. A kinetic isotope effect and isotope exchange study of the nonenzymatic and the equine serum butyrylcholinesterase-catalyzed thioester hydrolysis. Robins LI; Meisenheimer KM; Fogle EJ; Chaplan CA; Redman RL; Vacca JT; Tellier MR; Collins BR; Duong DH; Schulz K; Marlier JF J Org Chem; 2013 Dec; 78(23):12029-39. PubMed ID: 24224609 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of low concentrations of the acetylthiocholine analogs acetyl(homo)thiocholine and acetyl(nor)thiocholine by acetylcholinesterase may be limited by selective gating at the enzyme peripheral site. Beri V; Auletta JT; Maharvi GM; Wood JF; Fauq AH; Rosenberry TL Chem Biol Interact; 2013 Mar; 203(1):38-43. PubMed ID: 23047027 [TBL] [Abstract][Full Text] [Related]
10. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
11. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior. Masson P; Bec N; Froment MT; Nachon F; Balny C; Lockridge O; Schopfer LM Eur J Biochem; 2004 May; 271(10):1980-90. PubMed ID: 15128307 [TBL] [Abstract][Full Text] [Related]
12. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. Hrabovská A; Debouzy JC; Froment MT; Devínsky F; Pauliková I; Masson P FEBS J; 2006 Mar; 273(6):1185-97. PubMed ID: 16519684 [TBL] [Abstract][Full Text] [Related]
13. Hydrolysis of oxo- and thio-esters by human butyrylcholinesterase. Masson P; Froment MT; Gillon E; Nachon F; Lockridge O; Schopfer LM Biochim Biophys Acta; 2007 Jan; 1774(1):16-34. PubMed ID: 17182295 [TBL] [Abstract][Full Text] [Related]
14. The significance of low substrate concentration measurements for mechanistic interpretation in cholinesterases. Stojan J Chem Biol Interact; 2013 Mar; 203(1):44-50. PubMed ID: 23279886 [TBL] [Abstract][Full Text] [Related]
15. A new sensitive spectrofluorimetric method for measurement of activity and kinetic study of cholinesterases. Mukhametgalieva AR; Zueva IV; Aglyamova AR; Lushchekina SV; Masson P Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140270. PubMed ID: 31518689 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a catalytic six-membered cyclic transition state in aminolysis of 4-nitrophenyl 3,5-dinitrobenzoate in acetonitrile: comparative brønsted-type plot, entropy of activation, and deuterium kinetic isotope effects. Um IH; Kim MY; Bae AR; Dust JM; Buncel E J Org Chem; 2015 Jan; 80(1):217-22. PubMed ID: 25438168 [TBL] [Abstract][Full Text] [Related]
17. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis. Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782 [TBL] [Abstract][Full Text] [Related]
18. [Use of 1- and 2-thionaphthylacetates as cholinesterase substrates]. Zhukovskiĭ IuG; Kuznetsova LP; Sochilina EE; Veksler KV Ukr Biokhim Zh (1999); 2003; 75(3):67-70. PubMed ID: 14577154 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of hydrolysis of acetylthiocholine and acetylcholine by cholinesterases. Komersová A; Komers K; Zdrazilová P Chem Biol Interact; 2005 Dec; 157-158():387-8. PubMed ID: 16498728 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis. Johnson-Winters K; Purpero VM; Kavana M; Moran GR Biochemistry; 2005 May; 44(19):7189-99. PubMed ID: 15882057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]