These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16231903)
1. Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. Eletsky A; Atreya HS; Liu G; Szyperski T J Am Chem Soc; 2005 Oct; 127(42):14578-9. PubMed ID: 16231903 [TBL] [Abstract][Full Text] [Related]
2. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. Shen Y; Atreya HS; Liu G; Szyperski T J Am Chem Soc; 2005 Jun; 127(25):9085-99. PubMed ID: 15969587 [TBL] [Abstract][Full Text] [Related]
3. Fast (4,3)D GFT-TS NMR for NOESY of small to medium-sized proteins. Xia Y; Veeraraghavan S; Zhu Q; Gao X J Magn Reson; 2008 Jan; 190(1):142-8. PubMed ID: 17923427 [TBL] [Abstract][Full Text] [Related]
4. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. Atreya HS; Eletsky A; Szyperski T J Am Chem Soc; 2005 Apr; 127(13):4554-5. PubMed ID: 15796503 [TBL] [Abstract][Full Text] [Related]
5. Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. Deschamps M; Campbell ID J Magn Reson; 2006 Feb; 178(2):206-11. PubMed ID: 16249110 [TBL] [Abstract][Full Text] [Related]
6. Optimization of three-dimensional TROSY-type HCCH NMR correlation of aromatic (1)H-(13)C groups in proteins. Meissner A; Sorensen OW J Magn Reson; 1999 Aug; 139(2):447-50. PubMed ID: 10423385 [TBL] [Abstract][Full Text] [Related]
7. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings. Atreya HS; Garcia E; Shen Y; Szyperski T J Am Chem Soc; 2007 Jan; 129(3):680-92. PubMed ID: 17227032 [TBL] [Abstract][Full Text] [Related]
8. NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. Torizawa T; Ono AM; Terauchi T; Kainosho M J Am Chem Soc; 2005 Sep; 127(36):12620-6. PubMed ID: 16144410 [TBL] [Abstract][Full Text] [Related]
9. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. Zhou DH; Shah G; Cormos M; Mullen C; Sandoz D; Rienstra CM J Am Chem Soc; 2007 Sep; 129(38):11791-801. PubMed ID: 17725352 [TBL] [Abstract][Full Text] [Related]
10. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. Lorieau JL; McDermott AE J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274 [TBL] [Abstract][Full Text] [Related]
11. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. Kim S; Szyperski T J Am Chem Soc; 2003 Feb; 125(5):1385-93. PubMed ID: 12553842 [TBL] [Abstract][Full Text] [Related]
12. Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correlation experiments. Meissner A; Sorensen OW J Magn Reson; 2000 May; 144(1):171-4. PubMed ID: 10783289 [TBL] [Abstract][Full Text] [Related]
13. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. O'Hare B; Benesi AJ; Showalter SA J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037 [TBL] [Abstract][Full Text] [Related]
14. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Korzhnev DM; Kay LE Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162 [TBL] [Abstract][Full Text] [Related]
15. G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Atreya HS; Szyperski T Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9642-7. PubMed ID: 15210958 [TBL] [Abstract][Full Text] [Related]
16. Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. Skalicky JJ; Mills JL; Sharma S; Szyperski T J Am Chem Soc; 2001 Jan; 123(3):388-97. PubMed ID: 11456540 [TBL] [Abstract][Full Text] [Related]
17. TROSY-based correlation and NOE spectroscopy for NMR structural studies of large proteins. Zhu G; Xia Y; Lin D; Gao X Methods Mol Biol; 2004; 278():57-78. PubMed ID: 15317991 [TBL] [Abstract][Full Text] [Related]
18. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Palmer AG; Grey MJ; Wang C Methods Enzymol; 2005; 394():430-65. PubMed ID: 15808232 [TBL] [Abstract][Full Text] [Related]
19. Rapid NMR data collection. Atreya HS; Szyperski T Methods Enzymol; 2005; 394():78-108. PubMed ID: 15808218 [TBL] [Abstract][Full Text] [Related]
20. An integrated platform for automated analysis of protein NMR structures. Huang YJ; Moseley HN; Baran MC; Arrowsmith C; Powers R; Tejero R; Szyperski T; Montelione GT Methods Enzymol; 2005; 394():111-41. PubMed ID: 15808219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]