These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 16231917)

  • 1. Synthesis of helical polyacetylene in chiral nematic liquid crystals using crown ether type binaphthyl derivatives as chiral dopants.
    Akagi K; Guo S; Mori T; Goh M; Piao G; Kyotani M
    J Am Chem Soc; 2005 Oct; 127(42):14647-54. PubMed ID: 16231917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field.
    Goh M; Kyotani M; Akagi K
    J Am Chem Soc; 2007 Jul; 129(27):8519-27. PubMed ID: 17579404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical polyacetylene--origins and synthesis.
    Akagi K; Mori T
    Chem Rec; 2008; 8(6):395-406. PubMed ID: 19107913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonracemic dopant-mediated hierarchical amplification of macromolecular helicity in a charged polyacetylene leading to a cholesteric liquid crystal in water.
    Maeda K; Takeyama Y; Sakajiri K; Yashima E
    J Am Chem Soc; 2004 Dec; 126(50):16284-5. PubMed ID: 15600305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants.
    Hayasaka H; Miyashita T; Nakayama M; Kuwada K; Akagi K
    J Am Chem Soc; 2012 Feb; 134(8):3758-65. PubMed ID: 22296669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis-chelated imine-alkoxytitanium complexes: novel chiral dopants with high helical twisting power in liquid crystals.
    Braun M; Hahn A; Engelmann M; Fleischer R; Frank W; Kryschi C; Haremza S; Kürschner K; Parker R
    Chemistry; 2005 May; 11(11):3405-12. PubMed ID: 15803519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical polyacetylene synthesized with a chiral nematic reaction field.
    Akagi K; Piao G; Kaneko S; Sakamaki K; Shirakawa H; Kyotani M
    Science; 1998 Nov; 282(5394):1683-6. PubMed ID: 9831554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-arylated 3,5-dihydro-4H-dinaphtho[2,1-c:1',2'-e]azepines: axially chiral donors with high helical twisting powers for nonplanar push-pull chromophores.
    Frank BB; Camafort Blanco B; Jakob S; Ferroni F; Pieraccini S; Ferrarini A; Boudon C; Gisselbrecht JP; Seiler P; Spada GP; Diederich F
    Chemistry; 2009 Sep; 15(36):9005-16. PubMed ID: 19670198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular helicity induction in a cationic polyacetylene assisted by an anionic polyisocyanide with helicity memory in water: replication of macromolecular helicity.
    Maeda K; Ishikawa M; Yashima E
    J Am Chem Soc; 2004 Nov; 126(46):15161-6. PubMed ID: 15548013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically controlled helical graphite films prepared from iodine-doped helical polyacetylene films using morphology-retaining carbonization.
    Matsushita S; Kyotani M; Akagi K
    J Am Chem Soc; 2011 Nov; 133(44):17977-92. PubMed ID: 21970653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer.
    Miyagawa T; Furuko A; Maeda K; Katagiri H; Furusho Y; Yashima E
    J Am Chem Soc; 2005 Apr; 127(14):5018-9. PubMed ID: 15810826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single- and double-stranded helical polymers: synthesis, structures, and functions.
    Yashima E; Maeda K; Furusho Y
    Acc Chem Res; 2008 Sep; 41(9):1166-80. PubMed ID: 18690750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties.
    Gan H; Liu H; Li Y; Zhao Q; Li Y; Wang S; Jiu T; Wang N; He X; Yu D; Zhu D
    J Am Chem Soc; 2005 Sep; 127(36):12452-3. PubMed ID: 16144368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional polyacetylenes.
    Lam JW; Tang BZ
    Acc Chem Res; 2005 Sep; 38(9):745-54. PubMed ID: 16171317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First stereoselective syntheses of (-)-siphonodiol and (-)-tetrahydrosiphonodiol, bioactive polyacetylenes from marine sponges.
    López S; Fernández-Trillo F; Midón P; Castedo L; Saá C
    J Org Chem; 2005 Aug; 70(16):6346-52. PubMed ID: 16050696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Reaction Field with Thermally Invertible Helical Sense that Controls the Helicities of Conjugated Polymers.
    Akagi K; Yamashita T; Horie K; Goh M; Yamamoto M
    Adv Mater; 2020 Mar; 32(12):e1906665. PubMed ID: 32027067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New 2,2'-substituted 4,4'-dimethoxy-6,6'-dimethyl[1,1'-biphenyls], inducing a strong helical twisting power in liquid crystals.
    Holzwarth R; Bartsch R; Cherkaoui Z; Solladié G
    Chemistry; 2004 Aug; 10(16):3931-5. PubMed ID: 15316990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of chiral dopants based on carbohydrates.
    Tsuruta T; Koyama T; Yasutake M; Hatano K; Matsuoka K
    Carbohydr Res; 2014 Jul; 393():15-22. PubMed ID: 24887702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.