These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metabolism and pharmacokinetics of oxazaphosphorines. Boddy AV; Yule SM Clin Pharmacokinet; 2000 Apr; 38(4):291-304. PubMed ID: 10803453 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of Cyclophosphamide Metabolism in Humans, Dogs, Cats, and Mice and Relationship to Cytotoxic Activity and Pharmacokinetics. Ramirez DA; Collins KP; Aradi AE; Conger KA; Gustafson DL Drug Metab Dispos; 2019 Mar; 47(3):257-268. PubMed ID: 30567881 [TBL] [Abstract][Full Text] [Related]
4. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Helsby NA; Yong M; van Kan M; de Zoysa JR; Burns KE Br J Clin Pharmacol; 2019 Sep; 85(9):1925-1934. PubMed ID: 31218720 [TBL] [Abstract][Full Text] [Related]
5. [Cyclophosphamide]. Lorenz C; Jaehde U Dtsch Med Wochenschr; 2001 Jul; 126(28-29):815-8. PubMed ID: 11499264 [No Abstract] [Full Text] [Related]
6. New insights into the clinical pharmacokinetics of trofosfamide. Brinker A; Kisro J; Letsch C; Brüggemann SK; Wagner T Int J Clin Pharmacol Ther; 2002 Aug; 40(8):376-81. PubMed ID: 12467306 [TBL] [Abstract][Full Text] [Related]
7. Fractionated administration of high-dose cyclophosphamide: influence on dose-dependent changes in pharmacokinetics and metabolism. Busse D; Busch FW; Schweizer E; Bohnenstengel F; Eichelbaum M; Fischer P; Schumacher K; Aulitzky WE; Kroemer HK Cancer Chemother Pharmacol; 1999; 43(3):263-8. PubMed ID: 9923558 [TBL] [Abstract][Full Text] [Related]
8. Cardiotoxicity of cyclophosphamide's metabolites: an in vitro metabolomics approach in AC16 human cardiomyocytes. Dionísio F; Araújo AM; Duarte-Araújo M; Bastos ML; Guedes de Pinho P; Carvalho F; Costa VM Arch Toxicol; 2022 Feb; 96(2):653-671. PubMed ID: 35088106 [TBL] [Abstract][Full Text] [Related]
9. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. Pass GJ; Carrie D; Boylan M; Lorimore S; Wright E; Houston B; Henderson CJ; Wolf CR Cancer Res; 2005 May; 65(10):4211-7. PubMed ID: 15899812 [TBL] [Abstract][Full Text] [Related]
10. High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy. de Jonge ME; Huitema AD; Beijnen JH; Rodenhuis S Br J Cancer; 2006 May; 94(9):1226-30. PubMed ID: 16622453 [TBL] [Abstract][Full Text] [Related]
11. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. Huitema AD; Mathôt RA; Tibben MM; Rodenhuis S; Beijnen JH J Pharmacokinet Pharmacodyn; 2001 Jun; 28(3):211-30. PubMed ID: 11468938 [TBL] [Abstract][Full Text] [Related]
12. Population pharmacokinetics of cyclophosphamide and metabolites in children with neuroblastoma: a report from the Children's Oncology Group. McCune JS; Salinger DH; Vicini P; Oglesby C; Blough DK; Park JR J Clin Pharmacol; 2009 Jan; 49(1):88-102. PubMed ID: 18927240 [TBL] [Abstract][Full Text] [Related]
13. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. Baumann F; Lorenz C; Jaehde U; Preiss R J Chromatogr B Biomed Sci Appl; 1999 Jun; 729(1-2):297-305. PubMed ID: 10410955 [TBL] [Abstract][Full Text] [Related]
14. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. Busse D; Busch FW; Bohnenstengel F; Eichelbaum M; Fischer P; Opalinska J; Schumacher K; Schweizer E; Kroemer HK J Clin Oncol; 1997 May; 15(5):1885-96. PubMed ID: 9164199 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of resistance to the toxicity of cyclophosphamide. Gamcsik MP; Dolan ME; Andersson BS; Murray D Curr Pharm Des; 1999 Aug; 5(8):587-605. PubMed ID: 10469893 [TBL] [Abstract][Full Text] [Related]
16. An overview of cyclophosphamide and ifosfamide pharmacology. Fleming RA Pharmacotherapy; 1997; 17(5 Pt 2):146S-154S. PubMed ID: 9322882 [TBL] [Abstract][Full Text] [Related]
17. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. Česen M; Eleršek T; Novak M; Žegura B; Kosjek T; Filipič M; Heath E Environ Pollut; 2016 Mar; 210():192-201. PubMed ID: 26735164 [TBL] [Abstract][Full Text] [Related]
18. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Cagnoni PJ; Matthes S; Day TC; Bearman SI; Shpall EJ; Jones RB Bone Marrow Transplant; 1999 Jul; 24(1):1-4. PubMed ID: 10435726 [TBL] [Abstract][Full Text] [Related]
19. Clinical pharmacokinetics of cyclophosphamide. Moore MJ Clin Pharmacokinet; 1991 Mar; 20(3):194-208. PubMed ID: 2025981 [TBL] [Abstract][Full Text] [Related]
20. The influence of interferon-alpha on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite in patients with multiple myeloma. Hassan M; Nilsson C; Olsson H; Lundin J; Osterborg A Eur J Haematol; 1999 Sep; 63(3):163-70. PubMed ID: 10485271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]