BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 16232126)

  • 1. Towards the application of proteomics in renal disease diagnosis.
    Vidal BC; Bonventre JV; I-Hong Hsu S
    Clin Sci (Lond); 2005 Nov; 109(5):421-30. PubMed ID: 16232126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarker discovery for kidney diseases by mass spectrometry.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global and targeted quantitative proteomics for biomarker discovery.
    Veenstra TD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 847(1):3-11. PubMed ID: 17023222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic methods for biomarker discovery in urine.
    Wilkey DW; Merchant ML
    Semin Nephrol; 2007 Nov; 27(6):584-96. PubMed ID: 18061841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research.
    Ekegren T; Hanrieder J; Bergquist J
    J Mass Spectrom; 2008 May; 43(5):559-71. PubMed ID: 18416436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urinary proteomics: a tool to discover biomarkers of kidney diseases.
    Dihazi H; Müller GA
    Expert Rev Proteomics; 2007 Feb; 4(1):39-50. PubMed ID: 17288514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urinary proteomics: towards biomarker discovery, diagnostics and prognostics.
    Thongboonkerd V
    Mol Biosyst; 2008 Aug; 4(8):810-5. PubMed ID: 18633482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced proteomic technologies for cancer biomarker discovery.
    Wong SC; Chan CM; Ma BB; Lam MY; Choi GC; Au TC; Chan AS; Chan AT
    Expert Rev Proteomics; 2009 Apr; 6(2):123-34. PubMed ID: 19385940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value of proteomics applied to the follow-up in stem cell transplantation.
    Weissinger EM; Mischak H; Ganser A; Hertenstein B
    Ann Hematol; 2006 Apr; 85(4):205-11. PubMed ID: 16463156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A streamlined approach to high-throughput proteomics.
    Stephens AN; Quach P; Harry EJ
    Expert Rev Proteomics; 2005 Apr; 2(2):173-85. PubMed ID: 15892563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application.
    Mischak H; Delles C; Klein J; Schanstra JP
    Adv Chronic Kidney Dis; 2010 Nov; 17(6):493-506. PubMed ID: 21044772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Results of proteomic-based study of the kidney, urine, plasma, and uremic ultrafiltrate. Potential applications of the results in nephrology].
    Opatrný K
    Vnitr Lek; 2004 Jul; 50(7):556-63. PubMed ID: 15323265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary electrophoresis coupled to mass spectrometry for clinical diagnostic purposes.
    Fliser D; Wittke S; Mischak H
    Electrophoresis; 2005 Jul; 26(14):2708-16. PubMed ID: 15966014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery.
    Fang X; Balgley BM; Lee CS
    Electrophoresis; 2009 Dec; 30(23):3998-4007. PubMed ID: 19960464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.
    Pan S; Rush J; Peskind ER; Galasko D; Chung K; Quinn J; Jankovic J; Leverenz JB; Zabetian C; Pan C; Wang Y; Oh JH; Gao J; Zhang J; Montine T; Zhang J
    J Proteome Res; 2008 Feb; 7(2):720-30. PubMed ID: 18186601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications.
    Fagerquist CK; Bates AH; Heath S; King BC; Garbus BR; Harden LA; Miller WG
    J Proteome Res; 2006 Oct; 5(10):2527-38. PubMed ID: 17022624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges of genomics and proteomics in nephrology.
    Stojnev S; Pejcic M; Dolicanin Z; Velickovic LJ; Dimov I; Stefanovic V
    Ren Fail; 2009; 31(8):765-72. PubMed ID: 19814648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies.
    Blonder J; Conrads TP; Veenstra TD
    Expert Rev Proteomics; 2004 Aug; 1(2):153-63. PubMed ID: 15966810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role and challenges of proteomics in pharma and biotech: technical, scientific and commercial perspective.
    Qoronfleh MW
    Expert Rev Proteomics; 2006 Apr; 3(2):179-95. PubMed ID: 16608432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical considerations for mass spectrometry profiling in serum biomarker discovery.
    Whiteley GR; Colantonio S; Sacconi A; Saul RG
    Clin Lab Med; 2009 Mar; 29(1):57-69. PubMed ID: 19389551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.