BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16232541)

  • 1. Improvement of isoamyl acetate productivity in sake yeast by isolating mutants resistant to econazole.
    Asano T; Inoue T; Kurose N; Hiraoka N; Kawakita S
    J Biosci Bioeng; 1999; 87(5):697-9. PubMed ID: 16232541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of sake yeast mutants with enhanced isoamyl acetate productivity.
    Takahashi T; Ohara Y; Sawatari M; Sueno K
    J Biosci Bioeng; 2017 Jan; 123(1):71-77. PubMed ID: 27475923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased alcohol acetyltransferase activity by inositol limitation in Saccharomyces cerevisiae in sake mash.
    Furukawa K; Yamada T; Mizoguchi H; Hara S
    J Biosci Bioeng; 2003; 96(4):380-6. PubMed ID: 16233541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and isolation of mutants producing increased amounts of isoamyl acetate derived from hygromycin B-resistant sake yeast.
    Inoue T; Iefuji H; Katsumata H
    Biosci Biotechnol Biochem; 2012; 76(1):60-6. PubMed ID: 22232249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production.
    Hirooka K; Yamamoto Y; Tsutsui N; Tanaka T
    J Biosci Bioeng; 2005 Feb; 99(2):125-9. PubMed ID: 16233768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of production and control of acetate esters in yeasts.
    Yoshimoto H; Bogaki T
    J Biosci Bioeng; 2023 Oct; 136(4):261-269. PubMed ID: 37607842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylases in sake yeast affect fermentation characteristics.
    Tomimoto K; Akao T; Fukuda H
    Biosci Biotechnol Biochem; 2019 Aug; 83(8):1498-1505. PubMed ID: 30355069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio.
    Takahashi T; Ohara Y; Sueno K
    J Biosci Bioeng; 2017 Jun; 123(6):707-713. PubMed ID: 28286120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of sake yeast mutants producing a high level of ethyl caproate and/or isoamyl acetate.
    Arikawa Y; Yamada M; Shimosaka M; Okazaki M; Fukuzawa M
    J Biosci Bioeng; 2000; 90(6):675-7. PubMed ID: 16232931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate.
    Fukuda K; Yamamoto N; Kiyokawa Y; Yanagiuchi T; Wakai Y; Kitamoto K; Inoue Y; Kimura A
    Appl Environ Microbiol; 1998 Oct; 64(10):4076-8. PubMed ID: 9758847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis.
    Hashimoto S; Ogura M; Aritomi K; Hoshida H; Nishizawa Y; Akada R
    Appl Environ Microbiol; 2005 Jan; 71(1):312-9. PubMed ID: 15640203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a high-acetate-producing sake yeast Saccharomyces cerevisiae.
    Kurita O; Nakabayashi T; Saitho K
    J Biosci Bioeng; 2003; 95(1):65-71. PubMed ID: 16233368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants.
    Asano T; Kurose N; Tarumi S
    J Biosci Bioeng; 2001; 92(5):429-33. PubMed ID: 16233123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological role of the EHL gene in sake yeast and its effects on quality of sake.
    Tomonaga K; Tanaka J; Kiyoshi K; Akao T; Watanabe K; Kadokura T; Nakayama S
    J Biosci Bioeng; 2024 Mar; 137(3):195-203. PubMed ID: 38242756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu).
    Ando H; Kurata A; Kishimoto N
    J Appl Microbiol; 2015 Apr; 118(4):873-80. PubMed ID: 25626919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.
    Sawada K; Kitagaki H
    PeerJ; 2016; 4():e1552. PubMed ID: 26839744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash.
    Asano T; Kurose N; Hiraoka N; Kawakita S
    J Biosci Bioeng; 1999; 88(3):258-63. PubMed ID: 16232608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using promoter replacement and selection for loss of heterozygosity to generate an industrially applicable sake yeast strain that homozygously overproduces isoamyl acetate.
    Sahara H; Kotaka A; Kondo A; Ueda M; Hata Y
    J Biosci Bioeng; 2009 Nov; 108(5):359-64. PubMed ID: 19804856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2.
    Vadali RV; Horton CE; Rudolph FB; Bennett GN; San KY
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):698-704. PubMed ID: 14586577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an alpha-ketoglutarate-resistant sake yeast mutant with high organic acid productivity.
    Yano S; Asano T; Kurose N; Hiramatsu J; Shimoi H; Ito K
    J Biosci Bioeng; 2003; 96(4):332-6. PubMed ID: 16233532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.