BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16232841)

  • 21. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans.
    Sugio T; Katagiri T; Moriyama M; Zhèn YL; Inagaki K; Tano T
    Appl Environ Microbiol; 1988 Jan; 54(1):153-7. PubMed ID: 3345075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and some properties of cytochrome c oxidase purified from a bisulfite ion resistant Thiobacillus ferrooxidans strain, OK1-50.
    Iwahori K; Kamimura K; Sugio T
    Biosci Biotechnol Biochem; 1998 Jun; 62(6):1081-6. PubMed ID: 9692188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.
    Balci N; Brunner B; Turchyn AV
    Front Microbiol; 2017; 8():1564. PubMed ID: 28861071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfur speciation and tetrathionate sulfitolysis monitoring by capillary electrophoresis.
    Motellier S; Descostes M
    J Chromatogr A; 2001 Jan; 907(1-2):329-35. PubMed ID: 11217040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive simultaneous kinetic study of sulfitolysis and thiosulfatolysis of tetrathionate ion: unravelling the unique pH dependence of thiosulfatolysis.
    Ji C; Yan X; Horváth AK; Pan C; Zhao Y; Gao Q
    J Phys Chem A; 2015 Feb; 119(8):1238-45. PubMed ID: 25651337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Existence of a hydrogen sulfide:ferric ion oxidoreductase in iron-oxidizing bacteria.
    Sugio T; White KJ; Shute E; Choate D; Blake RC
    Appl Environ Microbiol; 1992 Jan; 58(1):431-3. PubMed ID: 16348640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus.
    Meulenberg R; Pronk JT; Frank J; Hazeu W; Bos P; Kuenen JG
    Eur J Biochem; 1992 Oct; 209(1):367-74. PubMed ID: 1396709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Elemental Sulfur in Forming Latent Precursors of H
    Jastrzembski JA; Allison RB; Friedberg E; Sacks GL
    J Agric Food Chem; 2017 Dec; 65(48):10542-10549. PubMed ID: 29129055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetrathionate hydrolase from the acidophilic microorganisms.
    Kanao T
    Front Microbiol; 2024; 15():1338669. PubMed ID: 38348185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans.
    Iwahori K; Takeuchi F; Kamimura K; Sugio T
    Appl Environ Microbiol; 2000 Sep; 66(9):3823-7. PubMed ID: 10966396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur.
    Ma K; Adams MW
    J Bacteriol; 1994 Nov; 176(21):6509-17. PubMed ID: 7961401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of an Iron-Oxidizing System during Growth of Thiobacillus ferrooxidans on Sulfur-Basal Salts Medium.
    Sugio T; Wada K; Mori M; Inagaki K; Tano T
    Appl Environ Microbiol; 1988 Jan; 54(1):150-152. PubMed ID: 16347521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate.
    Eccleston M; Kelly DP
    J Bacteriol; 1978 Jun; 134(3):718-27. PubMed ID: 26665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD.
    Sorokin DY; Kuenen JG; Jetten MS
    Arch Microbiol; 2001 Feb; 175(2):94-101. PubMed ID: 11285746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A kinetic study of rearrangement and degradation reactions of tetrathionate and trithionate in near-neutral solutions.
    Zhang H; Jeffrey MI
    Inorg Chem; 2010 Nov; 49(22):10273-82. PubMed ID: 20961089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of acetylene on nitrous oxide reduction and sulfide oxidation in batch and gradient cultures of Thiobacillus denitrificans.
    Dalsgaard T; Bak F
    Appl Environ Microbiol; 1992 May; 58(5):1601-8. PubMed ID: 1352443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.