BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1623305)

  • 1. Convergent solid-phase peptide synthesis IX: application to the synthesis of peptides with repetitive sequences.
    Celma C; Albericio F; Pedroso E; Giralt E
    Pept Res; 1992; 5(1):62-71. PubMed ID: 1623305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Side reactions in solid phase synthesis of histidine-containing peptides. Characterization of two major impurities by sample displacement chromatography and FAB-MS.
    Pessi A; Mancini V; Filtri P; Chiappinelli L
    Int J Pept Protein Res; 1992 Jan; 39(1):58-62. PubMed ID: 1634330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characterization of crude products from solid-phase peptide synthesis by mu-HPLC/fast atom bombardment mass spectrometry.
    McKellop K; Davidson W; Hansen G; Freeman D; Pallai P
    Pept Res; 1991; 4(1):40-6. PubMed ID: 1802236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry.
    Fields CG; VanDrisse VL; Fields GB
    Pept Res; 1993; 6(1):39-47. PubMed ID: 8439735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An HPLC-ESMS study on the solid-phase assembly of C-terminal proline peptides.
    Chiva C; Vilaseca M; Giralt E; Albericio F
    J Pept Sci; 1999 Mar; 5(3):131-40. PubMed ID: 10323557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution phase synthesis of the 14-residue peptaibol antibiotic trichovirin I.
    Brückner H; Koza A
    Amino Acids; 2003 Apr; 24(3):311-23. PubMed ID: 12707814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of azaalanine peptides using the solid phase method.
    Gray CJ; Desai NI; Gorst R; Masih G
    Biomed Pept Proteins Nucleic Acids; 1996; 2(1):13-8. PubMed ID: 9346831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Side reactions in peptide synthesis. V. O-sulfonation of serine and threonine during removal of pmc- and mtr-protecting groups from arginine residues in fmoc-solid phase synthesis].
    Jaeger E; Remmer HA; Jung G; Metzger J; Oberthür W; Rücknagel KP; Schäfer W; Sonnenbichler J; Zetl I
    Biol Chem Hoppe Seyler; 1993 May; 374(5):349-62. PubMed ID: 8338636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of affinity sorbents utilizing glutathione analogs.
    Lyttle MH; Aaron DT; Hocker MD; Hughes BR
    Pept Res; 1992; 5(6):336-42. PubMed ID: 1493361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-prolines (psi Pro) for accessing "inaccessible" peptides.
    Mutter M; Nefzi A; Sato T; Sun X; Wahl F; Wöhr T
    Pept Res; 1995; 8(3):145-53. PubMed ID: 7670229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular pyrophosphate formation during N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of peptides containing adjacent phosphotyrosine residues.
    Ottinger EA; Xu Q; Barany G
    Pept Res; 1996; 9(5):223-8. PubMed ID: 9000247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of an amino acid analogue to incorporate p-aminobenzyl-EDTA in peptides.
    Song AI; Rana TM
    Bioconjug Chem; 1997; 8(2):249-52. PubMed ID: 9095368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for solid phase peptide synthesis which employ a minimum of instrumentation.
    Edmondson JM; Klebe RJ; Zardeneta G; Weintraub ST; Kanda P
    Biotechniques; 1988 Oct; 6(9):868-72, 875-6. PubMed ID: 3273197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid determination of sequence variations in actinidin isolated from Actinidia chinensis (var. Hayward) using fast atom bombardment mapping mass spectrometry and gas phase microsequencing.
    Naylor S; Ang SG; Williams DH; Moore CH; Walsh K
    Biomed Environ Mass Spectrom; 1989 Jun; 18(6):424-8. PubMed ID: 2765702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase synthesis of "mixed" peptidomimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids.
    Busnel O; Bi L; Dali H; Cheguillaume A; Chevance S; Bondon A; Muller S; Baudy-Floc'h M
    J Org Chem; 2005 Dec; 70(26):10701-8. PubMed ID: 16355988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expediting the Fmoc solid phase synthesis of long peptides through the application of dimethyloxazolidine dipeptides.
    White P; Keyte JW; Bailey K; Bloomberg G
    J Pept Sci; 2004 Jan; 10(1):18-26. PubMed ID: 14959888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and identification of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale.
    Higaki-Sato N; Sato K; Esumi Y; Okumura T; Yoshikawa H; Tanaka-Kuwajima C; Kurata A; Kotaru M; Kawabata M; Nakamura Y; Ohtsuki K
    J Agric Food Chem; 2003 Jan; 51(1):8-13. PubMed ID: 12502378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the C-terminal amino acid amides by carboxypeptidase Y digestion and fast atom bombardment mass spectrometry.
    Kim J; Kim K
    Biochem Mol Biol Int; 1994 Nov; 34(5):897-907. PubMed ID: 7703906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-flow solid (gel)-phase peptide synthesis using unsupported ultrahigh-load polymers: Fmoc/t-butyl strategy.
    Johnson T; Coffey AF
    Pept Res; 1993; 6(6):337-45. PubMed ID: 8292851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.