These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16233244)

  • 1. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen.
    Shima S; Warkentin E; Thauer RK; Ermler U
    J Biosci Bioeng; 2002; 93(6):519-30. PubMed ID: 16233244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reversed genetic approach reveals the coenzyme specificity and other catalytic properties of three enzymes putatively involved in anaerobic oxidation of methane with sulfate.
    Kojima H; Moll J; Kahnt J; Fukui M; Shima S
    Environ Microbiol; 2014 Nov; 16(11):3431-42. PubMed ID: 24707918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri.
    Rospert S; Breitung J; Ma K; Schwörer B; Zirngibl C; Thauer RK; Linder D; Huber R; Stetter KO
    Arch Microbiol; 1991; 156(1):49-55. PubMed ID: 1772346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea.
    Schwörer B; Breitung J; Klein AR; Stetter KO; Thauer RK
    Arch Microbiol; 1993; 159(3):225-32. PubMed ID: 8481089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unique biochemistry of methanogenesis.
    Deppenmeier U
    Prog Nucleic Acid Res Mol Biol; 2002; 71():223-83. PubMed ID: 12102556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus.
    Vorholt JA; Hafenbradl D; Stetter KO; Thauer RK
    Arch Microbiol; 1997 Jan; 167(1):19-23. PubMed ID: 9000337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis of Hydrogenotrophic Methanogenesis.
    Shima S; Huang G; Wagner T; Ermler U
    Annu Rev Microbiol; 2020 Sep; 74():713-733. PubMed ID: 32692612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymology of one-carbon metabolism in methanogenic pathways.
    Ferry JG
    FEMS Microbiol Rev; 1999 Jan; 23(1):13-38. PubMed ID: 10077852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide.
    Donnelly MI; Wolfe RS
    J Biol Chem; 1986 Dec; 261(35):16653-9. PubMed ID: 3097011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds.
    Kurth JM; Nobu MK; Tamaki H; de Jonge N; Berger S; Jetten MSM; Yamamoto K; Mayumi D; Sakata S; Bai L; Cheng L; Nielsen JL; Kamagata Y; Wagner T; Welte CU
    ISME J; 2021 Dec; 15(12):3549-3565. PubMed ID: 34145392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bioenergetics of methanogenesis.
    Daniels L; Sparling R; Sprott GD
    Biochim Biophys Acta; 1984 Sep; 768(2):113-63. PubMed ID: 6236847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-carbon chemistry of acetogenic and methanogenic bacteria.
    Zeikus JG; Kerby R; Krzycki JA
    Science; 1985 Mar; 227(4691):1167-73. PubMed ID: 3919443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of formylmethanofuran: tetrahydromethanopterin formyltransferase in complex with its coenzymes.
    Acharya P; Warkentin E; Ermler U; Thauer RK; Shima S
    J Mol Biol; 2006 Mar; 357(3):870-9. PubMed ID: 16466742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of coenzyme F420-dependent NADP reductase in methanogenic archaea containing an NADP-dependent alcohol dehydrogenase.
    Berk H; Thauer RK
    Arch Microbiol; 1997 Nov; 168(5):396-402. PubMed ID: 9325428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular tools for investigating ANME community structure and function.
    Hallam SJ; Pagé AP; Constan L; Song YC; Norbeck AD; Brewer H; Pasa-Tolic L
    Methods Enzymol; 2011; 494():75-90. PubMed ID: 21402210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities.
    Dziewit L; Pyzik A; Romaniuk K; Sobczak A; Szczesny P; Lipinski L; Bartosik D; Drewniak L
    Front Microbiol; 2015; 6():694. PubMed ID: 26217325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.