These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16233347)

  • 1. Genetically modified industrial yeast ready for application.
    Akada R
    J Biosci Bioeng; 2002; 94(6):536-44. PubMed ID: 16233347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.
    Kitagaki H; Kitamoto K
    Annu Rev Food Sci Technol; 2013; 4():215-35. PubMed ID: 23464572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of genetic engineering for improving brewing, wine-making and baking yeasts.
    Dequin S
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):577-88. PubMed ID: 11601604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.
    Schuller D; Casal M
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):292-304. PubMed ID: 15856224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The construction of recombinant industrial yeasts free of bacterial sequences by directed gene replacement into a nonessential region of the genome.
    Xiao W; Rank GH
    Gene; 1989 Mar; 76(1):99-107. PubMed ID: 2545533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.
    Hirosawa I; Aritomi K; Hoshida H; Kashiwagi S; Nishizawa Y; Akada R
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):68-73. PubMed ID: 14758521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review.
    Heitmann M; Zannini E; Arendt E
    Crit Rev Food Sci Nutr; 2018 May; 58(7):1152-1164. PubMed ID: 27874287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences.
    Walker ME; Gardner JM; Vystavelova A; McBryde C; de Barros Lopes M; Jiranek V
    FEMS Yeast Res; 2003 Dec; 4(3):339-47. PubMed ID: 14654439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.
    Donalies UE; Nguyen HT; Stahl U; Nevoigt E
    Adv Biochem Eng Biotechnol; 2008; 111():67-98. PubMed ID: 18463806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour.
    Louw C; La Grange D; Pretorius IS; van Rensburg P
    J Biotechnol; 2006 Oct; 125(4):447-61. PubMed ID: 16644051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From yeast genetics to biotechnology.
    Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(4):483-91. PubMed ID: 12512257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.
    Mukai N; Masaki K; Fujii T; Iefuji H
    J Biosci Bioeng; 2014 Jul; 118(1):50-5. PubMed ID: 24507903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel brewing yeast hybrids: creation and application.
    Krogerus K; Magalhães F; Vidgren V; Gibson B
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):65-78. PubMed ID: 27885413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.
    Kadowaki M; Fujimaru Y; Taguchi S; Ferdouse J; Sawada K; Kimura Y; Terasawa Y; Agrimi G; Anai T; Noguchi H; Toyoda A; Fujiyama A; Akao T; Kitagaki H
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing a risk-assessment process for release of genetically modified wine yeast into the environment.
    Schoeman H; Wolfaardt GM; Botha A; van Rensburg P; Pretorius IS
    Can J Microbiol; 2009 Aug; 55(8):990-1002. PubMed ID: 19898539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic wine yeast technology comes of age: is it time for transgenic wine?
    Cebollero E; Gonzalez-Ramos D; Tabera L; Gonzalez R
    Biotechnol Lett; 2007 Feb; 29(2):191-200. PubMed ID: 17120088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.
    Kitagaki H; Takagi H
    J Biosci Bioeng; 2014 Apr; 117(4):383-93. PubMed ID: 24210052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.
    Ando A; Suzuki C; Shima J
    Appl Environ Microbiol; 2005 Nov; 71(11):7075-82. PubMed ID: 16269743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced expression of the alcohol acetyltransferase gene ATF1 in industrial yeast Saccharomyces pastorianus TUM 34/70.
    Fischer S; Büchner KR; Becker T
    Yeast; 2018 Sep; 35(9):531-541. PubMed ID: 29727488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.