These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16233347)

  • 21. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.
    Gonçalves M; Pontes A; Almeida P; Barbosa R; Serra M; Libkind D; Hutzler M; Gonçalves P; Sampaio JP
    Curr Biol; 2016 Oct; 26(20):2750-2761. PubMed ID: 27720622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically-modified brewing yeasts for the 21st century. Progress to date.
    Hammond JR
    Yeast; 1995 Dec; 11(16):1613-27. PubMed ID: 8720067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using promoter replacement and selection for loss of heterozygosity to generate an industrially applicable sake yeast strain that homozygously overproduces isoamyl acetate.
    Sahara H; Kotaka A; Kondo A; Ueda M; Hata Y
    J Biosci Bioeng; 2009 Nov; 108(5):359-64. PubMed ID: 19804856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the performance of brewing yeasts.
    Karabín M; Jelínek L; Kotrba P; Cejnar R; Dostálek P
    Biotechnol Adv; 2018; 36(3):691-706. PubMed ID: 29277309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.
    Borneman AR; Forgan AH; Kolouchova R; Fraser JA; Schmidt SA
    G3 (Bethesda); 2016 Apr; 6(4):957-71. PubMed ID: 26869621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae.
    Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA
    Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene.
    Kotaka A; Sahara H; Hata Y
    J Biosci Bioeng; 2010 Dec; 110(6):675-8. PubMed ID: 20708434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Historic development of yeast genetics from the beginning to the first gene transformation in brewing yeast strains].
    Schulz R
    Zentralbl Mikrobiol; 1989; 144(3):163-8. PubMed ID: 2672680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.
    Urbanczyk H; Noguchi C; Wu H; Watanabe D; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2011 Jul; 112(1):44-8. PubMed ID: 21459038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.
    Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies for the genetic manipulation of Saccharomyces cerevisiae.
    Tuite MF
    Crit Rev Biotechnol; 1992; 12(1-2):157-88. PubMed ID: 1733520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress tolerance: the key to effective strains of industrial baker's yeast.
    Attfield PV
    Nat Biotechnol; 1997 Dec; 15(13):1351-7. PubMed ID: 9415886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making.
    Izawa S; Kita T; Ikeda K; Miki T; Inoue Y
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2800-7. PubMed ID: 17986786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.
    Shimizu M; Miyashita K; Kitagaki H; Ito K; Shimoi H
    J Biosci Bioeng; 2005 Dec; 100(6):678-80. PubMed ID: 16473780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective breeding of conventional and new industrial microorganisms: from sake microorganisms to green algae.
    Murooka Y
    World J Microbiol Biotechnol; 1992 Dec; 8 Suppl 1():99-101. PubMed ID: 24425660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.
    Bellon JR; Yang F; Day MP; Inglis DL; Chambers PJ
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8597-609. PubMed ID: 26099331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes.
    Ogihara F; Kitagaki H; Wang Q; Shimoi H
    Yeast; 2008 Jun; 25(6):419-32. PubMed ID: 18509847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.