These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16233353)

  • 1. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates.
    Tsuge T
    J Biosci Bioeng; 2002; 94(6):579-84. PubMed ID: 16233353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils?
    Surendran A; Lakshmanan M; Chee JY; Sulaiman AM; Thuoc DV; Sudesh K
    Front Bioeng Biotechnol; 2020; 8():169. PubMed ID: 32258007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters.
    Park SJ; Kim TW; Kim MK; Lee SY; Lim SC
    Biotechnol Adv; 2012; 30(6):1196-206. PubMed ID: 22137963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of microbial polyester by fermentation of recombinant microorganisms.
    Lee SY; Choi JI
    Adv Biochem Eng Biotechnol; 2001; 71():183-207. PubMed ID: 11217412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.
    Jiang G; Hill DJ; Kowalczuk M; Johnston B; Adamus G; Irorere V; Radecka I
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27447619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.
    Szacherska K; Oleskowicz-Popiel P; Ciesielski S; Mozejko-Ciesielska J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review.
    Lhamo P; Behera SK; Mahanty B
    Biotechnol J; 2021 Sep; 16(9):e2100136. PubMed ID: 34132046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of polyhydroxyalkanoates using dairy processing waste - A review.
    Dutt Tripathi A; Paul V; Agarwal A; Sharma R; Hashempour-Baltork F; Rashidi L; Khosravi Darani K
    Bioresour Technol; 2021 Apr; 326():124735. PubMed ID: 33508643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources.
    Nduko JM; Taguchi S
    Front Bioeng Biotechnol; 2020; 8():618077. PubMed ID: 33614605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?
    Marciniak P; Możejko-Ciesielska J
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects.
    Braunegg G; Lefebvre G; Genser KF
    J Biotechnol; 1998 Oct; 65(2-3):127-61. PubMed ID: 9828458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production.
    Koller M; Braunegg G
    Bioengineering (Basel); 2015 May; 2(2):94-121. PubMed ID: 28955015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional stability of a mixed microbial consortium producing PHA from waste carbon sources.
    Coats ER; Loge FJ; Smith WA; Thompson DN; Wolcott MP
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):909-25. PubMed ID: 18478444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.