These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16233393)

  • 1. Removal of hazardous phenols by microalgae under photoautotrophic conditions.
    Hirooka T; Akiyama Y; Tsuji N; Nakamura T; Nagase H; Hirata K; Miyamoto K
    J Biosci Bioeng; 2003; 95(2):200-3. PubMed ID: 16233393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata.
    Hirooka T; Nagase H; Uchida K; Hiroshige Y; Ehara Y; Nishikawa J; Nishihara T; Miyamoto K; Hirata Z
    Environ Toxicol Chem; 2005 Aug; 24(8):1896-901. PubMed ID: 16152959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata.
    Tsuji N; Hirooka T; Nagase H; Hirata K; Miyamoto K
    Biotechnol Lett; 2003 Feb; 25(3):241-4. PubMed ID: 12882578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XI. DNA hybridization.
    Kerfin W; Kessler E
    Arch Microbiol; 1978 Jan; 116(1):97-103. PubMed ID: 623499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.
    Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK
    J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of phenolic endocrine disruptors by Portulaca oleracea.
    Imai S; Shiraishi A; Gamo K; Watanabe I; Okuhata H; Miyasaka H; Ikeda K; Bamba T; Hirata K
    J Biosci Bioeng; 2007 May; 103(5):420-6. PubMed ID: 17609156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.
    Wang X; Bao K; Cao W; Zhao Y; Hu CW
    Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of dichlorophenol by Chlorella pyrenoidosa through self-regulating mechanism in air-tight test environment.
    Li F; Zhao L; Jinxu Y; Shi W; Zhou S; Yuan K; Sheng GD
    Ecotoxicol Environ Saf; 2018 Nov; 164():109-117. PubMed ID: 30099171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of p-chlorophenol by a microalgae consortium.
    Lima SA; Raposo MF; Castro PM; Morais RM
    Water Res; 2004 Jan; 38(1):97-102. PubMed ID: 14630107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdroplet photobioreactor for the photoautotrophic culture of microalgal cells.
    Sung YJ; Kim JY; Bong KW; Sim SJ
    Analyst; 2016 Feb; 141(3):989-98. PubMed ID: 26673975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal and Biodegradation of Nonylphenol by Four Freshwater Microalgae.
    He N; Sun X; Zhong Y; Sun K; Liu W; Duan S
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27983663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation.
    Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2019 Feb; 273():592-598. PubMed ID: 30481658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optimization of photoautotrophic lipid production of Chlorella ellipsoidea seeded with heterotrophic cells].
    Wang J; Li Y; Wang W; Huang J; Shen G; Li S; Pan R
    Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1639-43. PubMed ID: 25726589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.
    Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A
    Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment.
    Han F; Pei H; Hu W; Jiang L; Cheng J; Zhang L
    Bioresour Technol; 2016 Jun; 209():16-22. PubMed ID: 26946436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal.
    Wang R; Wang S; Tai Y; Tao R; Dai Y; Guo J; Yang Y; Duan S
    J Hazard Mater; 2017 Oct; 339():310-319. PubMed ID: 28658640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode.
    Kuramitz H; Saitoh J; Hattori T; Tanaka S
    Water Res; 2002 Jul; 36(13):3323-9. PubMed ID: 12188131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.