These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 16233499)
1. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Almeida C; Cabral JM; Fonseca LP J Biosci Bioeng; 2003; 96(2):141-8. PubMed ID: 16233499 [TBL] [Abstract][Full Text] [Related]
2. Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Ferreira BS; da Fonseca MM; Cabral JM; Fonseca LP J Biotechnol; 2004 Apr; 109(1-2):147-58. PubMed ID: 15063623 [TBL] [Abstract][Full Text] [Related]
3. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM Appl Microbiol Biotechnol; 2003 Mar; 61(1):69-76. PubMed ID: 12658517 [TBL] [Abstract][Full Text] [Related]
4. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Shi XM; Jiang Y; Chen F Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304 [TBL] [Abstract][Full Text] [Related]
5. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy]. Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615 [TBL] [Abstract][Full Text] [Related]
6. On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae. Nilsson A; Taherzadeh MJ; Lidén G Bioprocess Biosyst Eng; 2002 Sep; 25(3):183-91. PubMed ID: 14508677 [TBL] [Abstract][Full Text] [Related]
8. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
9. Production of wild-type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains. Calado CR; Mannesse M; Egmond M; Cabral JM; Fonseca LP Biotechnol Bioeng; 2002 Jun; 78(6):692-8. PubMed ID: 11992534 [TBL] [Abstract][Full Text] [Related]
10. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Panuwatsuk W; Da Silva NA Biotechnol Bioeng; 2003 Mar; 81(6):712-8. PubMed ID: 12529885 [TBL] [Abstract][Full Text] [Related]
11. A process for the production of human proinsulin in Saccharomyces cerevisiae. Tøttrup HV; Carlsen S Biotechnol Bioeng; 1990 Feb; 35(4):339-48. PubMed ID: 18592528 [TBL] [Abstract][Full Text] [Related]
12. Process optimization of constitutive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Pal Y; Khushoo A; Mukherjee KJ Appl Microbiol Biotechnol; 2006 Feb; 69(6):650-7. PubMed ID: 15983807 [TBL] [Abstract][Full Text] [Related]
13. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. Antoniukas L; Grammel H; Reichl U J Biotechnol; 2006 Jul; 124(2):347-62. PubMed ID: 16513199 [TBL] [Abstract][Full Text] [Related]
14. Production of extracellular bifidogenic growth stimulator (BGS) from Propionibacterium shermanii using a bioreactor system with a microfiltration module and an on-line controller for lactic acid concentration. Kouya T; Tobita K; Horiuchi M; Nakayama E; Deguchi H; Tanaka T; Taniguchi M J Biosci Bioeng; 2008 Mar; 105(3):184-91. PubMed ID: 18397766 [TBL] [Abstract][Full Text] [Related]
15. Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Meinander NQ; Hahn-Hägerdal B Biotechnol Bioeng; 1997 May; 54(4):391-9. PubMed ID: 18634106 [TBL] [Abstract][Full Text] [Related]
16. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Faulkner E; Barrett M; Okor S; Kieran P; Casey E; Paradisi F; Engel P; Glennon B Biotechnol Prog; 2006; 22(3):889-97. PubMed ID: 16739976 [TBL] [Abstract][Full Text] [Related]
17. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A; Lidén G Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [TBL] [Abstract][Full Text] [Related]
18. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. De Swaaf ME; Sijtsma L; Pronk JT Biotechnol Bioeng; 2003 Mar; 81(6):666-72. PubMed ID: 12529880 [TBL] [Abstract][Full Text] [Related]
19. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Heyland J; Fu J; Blank LM; Schmid A Biotechnol Bioeng; 2010 Oct; 107(2):357-68. PubMed ID: 20552674 [TBL] [Abstract][Full Text] [Related]
20. Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. Calado CR; Monteiro SM; Cabral JM; Fonseca LP J Biosci Bioeng; 2002; 93(4):354-9. PubMed ID: 16233214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]