BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 16233532)

  • 1. Characterization of an alpha-ketoglutarate-resistant sake yeast mutant with high organic acid productivity.
    Yano S; Asano T; Kurose N; Hiramatsu J; Shimoi H; Ito K
    J Biosci Bioeng; 2003; 96(4):332-6. PubMed ID: 16233532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a high-acetate-producing sake yeast Saccharomyces cerevisiae.
    Kurita O; Nakabayashi T; Saitho K
    J Biosci Bioeng; 2003; 95(1):65-71. PubMed ID: 16233368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast.
    Tamura K; Gu Y; Wang Q; Yamada T; Ito K; Shimoi H
    J Biosci Bioeng; 2004; 98(3):159-66. PubMed ID: 16233684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High expression of unsaturated fatty acid synthesis gene OLE 1 in sake yeasts.
    Yamada T; Shimoi H; Ito K
    J Biosci Bioeng; 2005 May; 99(5):512-6. PubMed ID: 16233825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants.
    Asano T; Kurose N; Tarumi S
    J Biosci Bioeng; 2001; 92(5):429-33. PubMed ID: 16233123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation.
    Arikawa Y; Kobayashi M; Kodaira R; Shimosaka M; Muratsubaki H; Enomoto K; Okazaki M
    J Biosci Bioeng; 1999; 87(3):333-9. PubMed ID: 16232477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene.
    Kotaka A; Sahara H; Hata Y
    J Biosci Bioeng; 2010 Dec; 110(6):675-8. PubMed ID: 20708434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and transcriptional characterization of Saccharomyces cerevisiae strains with modified expression of catabolic regulators.
    Schuurmans JM; Boorsma A; Lascaris R; Hellingwerf KJ; Teixeira de Mattos MJ
    FEMS Yeast Res; 2008 Feb; 8(1):26-34. PubMed ID: 17892474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain.
    Wang Z; Da Silva NA
    Biotechnol Bioeng; 1993 Jun; 42(1):95-102. PubMed ID: 18609652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of sake yeast mutants deficient in gamma-aminobutyric acid utilization in sake brewing.
    Takahashi T; Furukawa A; Hara S; Mizoguchi H
    J Biosci Bioeng; 2004; 97(6):412-8. PubMed ID: 16233652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.
    Katou T; Kitagaki H; Akao T; Shimoi H
    Yeast; 2008 Nov; 25(11):799-807. PubMed ID: 19061192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash.
    Asano T; Kurose N; Hiraoka N; Kawakita S
    J Biosci Bioeng; 1999; 88(3):258-63. PubMed ID: 16232608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain.
    Kubo Y; Takagi H; Nakamori S
    J Biosci Bioeng; 2000; 90(6):619-24. PubMed ID: 16232921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae.
    Arikawa Y; Kuroyanagi T; Shimosaka M; Muratsubaki H; Enomoto K; Kodaira R; Okazaki M
    J Biosci Bioeng; 1999; 87(1):28-36. PubMed ID: 16232421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.
    Veit A; Polen T; Wendisch VF
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):406-21. PubMed ID: 17273855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.