These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16233601)

  • 1. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol.
    Koyama K; Seki M
    J Biosci Bioeng; 2004; 97(2):111-8. PubMed ID: 16233601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol.
    Koyama K; Seki M
    J Biosci Bioeng; 2004; 98(2):114-21. PubMed ID: 16233675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous alginate--poly(ethylene glycol) entrapment system for the cultivation of mammalian cells.
    Seifert DB; Phillips JA
    Biotechnol Prog; 1997; 13(5):569-76. PubMed ID: 9336976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen diffusivity in gel beads containing viable cells.
    Kurosawa H; Matsumura M; Tanaka H
    Biotechnol Bioeng; 1989 Oct; 34(7):926-32. PubMed ID: 18588184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads.
    Xu X; Stewart PS; Chen X
    Biotechnol Bioeng; 1996 Jan; 49(1):93-100. PubMed ID: 18623558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Culture conditions determine the enhancement of specific monoclonal antibody productivity of calcium alginate-entrapped S3H5/gamma2bA2 hybridoma cells.
    Lee GM; Chuck AS; Palsson BO
    Biotechnol Bioeng; 1993 Feb; 41(3):330-40. PubMed ID: 18609557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical approach in alginate membrane formulation for cell encapsulation in a GMP-based cell factory.
    Villani S; Marazzi M; Bucco M; Faustini M; Klinger M; Gaetani P; Crovato F; Vigo D; Caviggioli F; Torre ML
    Acta Biomater; 2008 Jul; 4(4):943-9. PubMed ID: 18296132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the role of microenvironment for microencapsulated Sacchromyces cerevisiae under osmotic stress.
    Sun ZJ; Lv GJ; Li SY; Xie YB; Yu WT; Wang W; Ma XJ
    J Biotechnol; 2007 Jan; 128(1):150-61. PubMed ID: 17028034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection.
    Fine T; Leskinen P; Isobe T; Shiraishi H; Morita M; Marks RS; Virta M
    Biosens Bioelectron; 2006 Jun; 21(12):2263-9. PubMed ID: 16460925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand.
    Seo KS; Choo KH; Chang HN; Park JK
    Appl Microbiol Biotechnol; 2009 May; 83(2):217-23. PubMed ID: 19153729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules.
    Chang HN; Seong GH; Yoo IK; Park JK; Seo JH
    Biotechnol Bioeng; 1996 Jul; 51(2):157-62. PubMed ID: 18624324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules.
    Sakai S; Hashimoto I; Kawakami K
    Biotechnol Bioeng; 2008 Jan; 99(1):235-43. PubMed ID: 17705234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a biodegradable alginate carrier system for antibiotics and bone cells.
    Ueng SW; Lee MS; Lin SS; Chan EC; Liu SJ
    J Orthop Res; 2007 Jan; 25(1):62-72. PubMed ID: 17019681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads.
    Vancov T; Jury K; Rice N; Van Zwieten L; Morris S
    J Appl Microbiol; 2007 Jan; 102(1):212-20. PubMed ID: 17184337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction and diffusion in a gel membrane reactor containing immobilized cells.
    De Backer L; Devleminck S; Willaert R; Baron G
    Biotechnol Bioeng; 1992 Jun; 40(2):322-8. PubMed ID: 18601119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate beads encapsulation matrix for urease and polyethyleneglycol-urease.
    Baysal SH
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(4):457-65. PubMed ID: 17701491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ethylenimine)-reinforced liquid-core capsules for the cultivation of hybridoma cells.
    Hsu YL; Chu IM
    Biotechnol Bioeng; 1992 Dec; 40(11):1300-8. PubMed ID: 18601085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel transfection method for mammalian cells using calcium alginate microbeads.
    Higashi T; Nagamori E; Sone T; Matsunaga S; Fukui K
    J Biosci Bioeng; 2004; 97(3):191-5. PubMed ID: 16233613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real and pseudo oxygen gradients in Ca-alginate beads monitored during polarographic Po2-measurements using Pt-needle microelectrodes.
    Müller W; Winnefeld A; Kohls O; Scheper T; Zimelka W; Baumgärtl H
    Biotechnol Bioeng; 1994 Aug; 44(5):617-25. PubMed ID: 18618797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.
    Simpson NE; Grant SC; Gustavsson L; Peltonen VM; Blackband SJ; Constantinidis I
    Biomaterials; 2006 Apr; 27(12):2577-86. PubMed ID: 16364429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.