BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16233674)

  • 1. Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing.
    Furukawa K; Kitano H; Mizoguchi H; Hara S
    J Biosci Bioeng; 2004; 98(2):107-13. PubMed ID: 16233674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased alcohol acetyltransferase activity by inositol limitation in Saccharomyces cerevisiae in sake mash.
    Furukawa K; Yamada T; Mizoguchi H; Hara S
    J Biosci Bioeng; 2003; 96(4):380-6. PubMed ID: 16233541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism].
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):123-8. PubMed ID: 15859341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains.
    Aguilera F; Peinado RA; Millán C; Ortega JM; Mauricio JC
    Int J Food Microbiol; 2006 Jul; 110(1):34-42. PubMed ID: 16690148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on ethanol tolerance of Saccharomyces cerevisiae X330 under very high gravity medium].
    Xue YM; Jiang N
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):508-13. PubMed ID: 16755936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake.
    Izawa S; Takemura R; Ikeda K; Fukuda K; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2005 Nov; 69(1):86-91. PubMed ID: 15803312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between effect of ethanol on proton flux across plasma membrane and ethanol tolerance, in Pichia stipitis.
    Meyrial V; Delgenes JP; Davison J; Salmon JM; Moletta R; Gounot AM
    Anaerobe; 1997 Dec; 3(6):423-9. PubMed ID: 16887618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.
    Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentation by Saccharomyces cerevisiae.
    Dasari G; Worth MA; Connor MA; Pamment NB
    Biotechnol Bioeng; 1990 Jan; 35(2):109-22. PubMed ID: 18592500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancements in ethanol tolerance of a self-flocculating yeast by calcium ion through decrease in plasmalemma permeability.
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):715-9. PubMed ID: 15971585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae.
    Pérez-Nevado F; Albergaria H; Hogg T; Girio F
    Int J Food Microbiol; 2006 May; 108(3):336-45. PubMed ID: 16564103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae.
    Yazawa H; Iwahashi H; Uemura H
    Yeast; 2007 Jul; 24(7):551-60. PubMed ID: 17506111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation.
    Bai FW; Ge XM; Anderson WA; Moo-Young M
    Biotechnol Bioeng; 2009 Jan; 102(1):113-21. PubMed ID: 18949752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Added inositol regulates invertase secretion and glucose-repressed SUC2 gene expression in Saccharomyces sp. W4.
    Chi Z; Ma L; Gao L; Duan X
    Indian J Biochem Biophys; 2007 Jun; 44(3):152-6. PubMed ID: 17650583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing effect of albumin hydrolysate on ethanol production employing Saccharomyces sake.
    Shin CS; Song JY; Ryu OH; Wang SS
    Biotechnol Bioeng; 1995 Mar; 45(5):450-3. PubMed ID: 18623238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Ras function on ethanol stress response of sake yeast.
    Yamaji K; Hara S; Mizoguchi H
    J Biosci Bioeng; 2003; 96(5):474-80. PubMed ID: 16233558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae.
    Takagi H; Takaoka M; Kawaguchi A; Kubo Y
    Appl Environ Microbiol; 2005 Dec; 71(12):8656-62. PubMed ID: 16332860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ethyl caproate production by inositol limitation in Saccharomyces cerevisiae.
    Furukawa K; Yamada T; Mizoguchi H; Hara S
    J Biosci Bioeng; 2003; 95(5):448-54. PubMed ID: 16233438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.