These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16233761)

  • 1. Root hair abundant genes LjRH101 and LjRH102 encode peroxidase and xyloglucan endotransglycosylase in Lotus japonicus.
    Maekawa T; Hayashi M; Murooka Y
    J Biosci Bioeng; 2005 Jan; 99(1):84-6. PubMed ID: 16233761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoplasmic reticulum-targeted GFP reveals ER remodeling in Mesorhizobium-treated Lotus japonicus root hairs during root hair curling and infection thread formation.
    Perrine-Walker FM; Kouchi H; Ridge RW
    Protoplasma; 2014 Jul; 251(4):817-26. PubMed ID: 24337802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression.
    Asamizu E; Nakamura Y; Sato S; Tabata S
    Mol Plant Microbe Interact; 2005 May; 18(5):487-98. PubMed ID: 15915647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell RNA-seq of Lotus japonicus provide insights into identification and function of root cell types of legume.
    Sun Z; Jiang S; Wang D; Li L; Liu B; Ran Q; Hu L; Xiong J; Tang Y; Gu X; Wu Y; Liang Z
    J Integr Plant Biol; 2023 May; 65(5):1147-1152. PubMed ID: 36537698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots.
    Ueda H; Sugimoto Y
    Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin distribution in Lotus japonicus during root nodule development.
    Pacios-Bras C; Schlaman HR; Boot K; Admiraal P; Langerak JM; Stougaard J; Spaink HP
    Plant Mol Biol; 2003 Aug; 52(6):1169-80. PubMed ID: 14682616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus.
    Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y
    Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus.
    Grønlund M; Roussis A; Flemetakis E; Quaedvlieg NE; Schlaman HR; Umehara Y; Katinakis P; Stougaard J; Spaink HP
    Mol Plant Microbe Interact; 2005 May; 18(5):414-27. PubMed ID: 15915640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley.
    Kwasniewski M; Janiak A; Mueller-Roeber B; Szarejko I
    J Plant Physiol; 2010 Sep; 167(13):1076-83. PubMed ID: 20388575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two CLE genes are induced by phosphate in roots of Lotus japonicus.
    Funayama-Noguchi S; Noguchi K; Yoshida C; Kawaguchi M
    J Plant Res; 2011 Jan; 124(1):155-63. PubMed ID: 20428922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus.
    Nadzieja M; Kelly S; Stougaard J; Reid D
    Plant J; 2018 Jul; 95(1):101-111. PubMed ID: 29676826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects.
    Karas BJ; Ross L; Novero M; Amyot L; Shrestha A; Inada S; Nakano M; Sakai T; Bonetta D; Sato S; Murray JD; Bonfante P; Szczyglowski K
    Plant Physiol; 2021 Aug; 186(4):2037-2050. PubMed ID: 34618101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population.
    Hayashi M; Miyahara A; Sato S; Kato T; Yoshikawa M; Taketa M; Hayashi M; Pedrosa A; Onda R; Imaizumi-Anraku H; Bachmair A; Sandal N; Stougaard J; Murooka Y; Tabata S; Kawasaki S; Kawaguchi M; Harada K
    DNA Res; 2001 Dec; 8(6):301-10. PubMed ID: 11853317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Lotus japonicus ndx gene family is involved in nodule function and maintenance.
    Grønlund M; Gustafsen C; Roussis A; Jensen D; Nielsen LP; Marcker KA; Jensen EO
    Plant Mol Biol; 2003 May; 52(2):303-16. PubMed ID: 12856938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu).
    Burak E; Quinton JN; Dodd IC
    Ann Bot; 2021 Jul; 128(1):45-57. PubMed ID: 33631013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.
    Babuin MF; Campestre MP; Rocco R; Bordenave CD; Escaray FJ; Antonelli C; Calzadilla P; Gárriz A; Serna E; Carrasco P; Ruiz OA; Menendez AB
    PLoS One; 2014; 9(5):e97106. PubMed ID: 24835559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis.
    Charpentier M; Bredemeier R; Wanner G; Takeda N; Schleiff E; Parniske M
    Plant Cell; 2008 Dec; 20(12):3467-79. PubMed ID: 19106374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus.
    Iturbe-Ormaetxe I; Haralampidis K; Papadopoulou K; Osbourn AE
    Plant Mol Biol; 2003 Mar; 51(5):731-43. PubMed ID: 12683345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots.
    Vissenberg K; Fry SC; Verbelen JP
    Plant Physiol; 2001 Nov; 127(3):1125-35. PubMed ID: 11706192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.