These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 16233811)
1. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. Shigematsu T; Takamine K; Kitazato M; Morita T; Naritomi T; Morimura S; Kida K J Biosci Bioeng; 2005 Apr; 99(4):415-22. PubMed ID: 16233811 [TBL] [Abstract][Full Text] [Related]
2. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Bae SO; Sugano Y; Ohi K; Shoda M Appl Microbiol Biotechnol; 2004 Aug; 65(3):315-22. PubMed ID: 15042328 [TBL] [Abstract][Full Text] [Related]
3. Role of water-soluble polysaccharides in bacterial cellulose production. Ishida T; Mitarai M; Sugano Y; Shoda M Biotechnol Bioeng; 2003 Aug; 83(4):474-8. PubMed ID: 12800141 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of cellulose pellicle production by constitutively expressing vitreoscilla hemoglobin in Acetobacter xylinum. Chien LJ; Chen HT; Yang PF; Lee CK Biotechnol Prog; 2006; 22(6):1598-603. PubMed ID: 17137307 [TBL] [Abstract][Full Text] [Related]
6. Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Ishida T; Sugano Y; Nakai T; Shoda M Biosci Biotechnol Biochem; 2002 Aug; 66(8):1677-81. PubMed ID: 12353627 [TBL] [Abstract][Full Text] [Related]
7. Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production. Setyawati MI; Chien LJ; Lee CK J Biotechnol; 2007 Oct; 132(1):38-43. PubMed ID: 17868946 [TBL] [Abstract][Full Text] [Related]
8. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295 [TBL] [Abstract][Full Text] [Related]
9. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Hyun JY; Mahanty B; Kim CG Appl Biochem Biotechnol; 2014 Apr; 172(8):3748-60. PubMed ID: 24569910 [TBL] [Abstract][Full Text] [Related]
10. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Bae SO; Shoda M Appl Microbiol Biotechnol; 2005 Apr; 67(1):45-51. PubMed ID: 15338079 [TBL] [Abstract][Full Text] [Related]
11. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Kongruang S Appl Biochem Biotechnol; 2008 Mar; 148(1-3):245-56. PubMed ID: 18418756 [TBL] [Abstract][Full Text] [Related]
12. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Keshk S; Sameshima K Appl Microbiol Biotechnol; 2006 Sep; 72(2):291-6. PubMed ID: 16450110 [TBL] [Abstract][Full Text] [Related]
13. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745 [TBL] [Abstract][Full Text] [Related]
14. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Volova TG; Prudnikova SV; Sukovatyi AG; Shishatskaya EI Appl Microbiol Biotechnol; 2018 Sep; 102(17):7417-7428. PubMed ID: 29982923 [TBL] [Abstract][Full Text] [Related]
15. Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. Battad-Bernardo E; McCrindle SL; Couperwhite I; Neilan BA FEMS Microbiol Lett; 2004 Feb; 231(2):253-60. PubMed ID: 14987772 [TBL] [Abstract][Full Text] [Related]
16. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Bae S; Shoda M Biotechnol Bioeng; 2005 Apr; 90(1):20-8. PubMed ID: 15712301 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of bacterial cellulose using hot water extracted wood sugars. Erbas Kiziltas E; Kiziltas A; Gardner DJ Carbohydr Polym; 2015 Jun; 124():131-8. PubMed ID: 25839803 [TBL] [Abstract][Full Text] [Related]
18. [Enzymatic studies of the wild type and of a cellulose-free mutant of Acetobacter xylinum]. Leisinger T Pathol Microbiol (Basel); 1966; 29(5):756-66. PubMed ID: 5961232 [No Abstract] [Full Text] [Related]
19. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD Lett Appl Microbiol; 2015 May; 60(5):491-6. PubMed ID: 25615895 [TBL] [Abstract][Full Text] [Related]
20. [Influence of culture mode on bacterial cellulose production and its structure and property]. Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]