BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16233948)

  • 21. Tumor necrosis factor-alpha-stimulated membrane type 1-matrix metalloproteinase production is modulated by epidermal growth factor receptor signaling in human gingival fibroblasts.
    Smith PC; Guerrero J; Tobar N; Cáceres M; González MJ; Martínez J
    J Periodontal Res; 2009 Feb; 44(1):73-80. PubMed ID: 19515020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TOB1 is regulated by EGF-dependent HER2 and EGFR signaling, is highly phosphorylated, and indicates poor prognosis in node-negative breast cancer.
    Helms MW; Kemming D; Contag CH; Pospisil H; Bartkowiak K; Wang A; Chang SY; Buerger H; Brandt BH
    Cancer Res; 2009 Jun; 69(12):5049-56. PubMed ID: 19491269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network.
    Morandell S; Stasyk T; Skvortsov S; Ascher S; Huber LA
    Proteomics; 2008 Nov; 8(21):4383-401. PubMed ID: 18846509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transitions in the model of epithelial patterning.
    Pribyl M; Muratov CB; Shvartsman SY
    Dev Dyn; 2003 Jan; 226(1):155-9. PubMed ID: 12508238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of EGF-receptor density on multiscale tumor growth patterns.
    Athale CA; Deisboeck TS
    J Theor Biol; 2006 Feb; 238(4):771-9. PubMed ID: 16126230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mathematical model of combination therapy using the EGFR signaling network.
    Araujo RP; Petricoin EF; Liotta LA
    Biosystems; 2005 Apr; 80(1):57-69. PubMed ID: 15740835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular response analysis of cellular regulatory networks.
    Bruggeman FJ; Westerhoff HV; Hoek JB; Kholodenko BN
    J Theor Biol; 2002 Oct; 218(4):507-20. PubMed ID: 12384053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling.
    Liu G; Swihart MT; Neelamegham S
    Bioinformatics; 2005 Apr; 21(7):1194-202. PubMed ID: 15531606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential inhibition of epidermal growth factor signaling pathways in rat hepatocytes by long-term ethanol treatment.
    Saso K; Moehren G; Higashi K; Hoek JB
    Gastroenterology; 1997 Jun; 112(6):2073-88. PubMed ID: 9178701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The complexity of complexes in signal transduction.
    Hlavacek WS; Faeder JR; Blinov ML; Perelson AS; Goldstein B
    Biotechnol Bioeng; 2003 Dec; 84(7):783-94. PubMed ID: 14708119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. G-protein-coupled receptor signaling and the EGF network in endocrine systems.
    Hsieh M; Conti M
    Trends Endocrinol Metab; 2005 Sep; 16(7):320-6. PubMed ID: 16054836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GH administration patterns differently regulate epidermal growth factor signaling.
    Díaz ME; Miquet JG; Rossi SP; Irene PE; Sotelo AI; Frungieri MB; Turyn D; González L
    J Endocrinol; 2014 May; 221(2):309-23. PubMed ID: 24623798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model.
    Moehren G; Markevich N; Demin O; Kiyatkin A; Goryanin I; Hoek JB; Kholodenko BN
    Biochemistry; 2002 Jan; 41(1):306-20. PubMed ID: 11772030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of protein binding regions.
    Chennamsetty N; Voynov V; Kayser V; Helk B; Trout BL
    Proteins; 2011 Mar; 79(3):888-97. PubMed ID: 21287620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of mechanistic models to integrate and analyze multiple proteomic datasets.
    Stites EC; Aziz M; Creamer MS; Von Hoff DD; Posner RG; Hlavacek WS
    Biophys J; 2015 Apr; 108(7):1819-1829. PubMed ID: 25863072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Receptor differential activation and cooperativity better explain cellular preference for different chemoattractant gradient shapes in an EGFR system.
    White JB; Takayama S
    Integr Biol (Camb); 2011 Oct; 3(10):1003-10. PubMed ID: 21918787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics.
    Foerster S; Kacprowski T; Dhople VM; Hammer E; Herzog S; Saafan H; Bien-Möller S; Albrecht M; Völker U; Ritter CA
    Proteomics; 2013 Nov; 13(21):3131-44. PubMed ID: 23956138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The two hats of SOS.
    Nimnual A; Bar-Sagi D
    Sci STKE; 2002 Aug; 2002(145):pe36. PubMed ID: 12177507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers.
    Xu J; Guo B; Zhang Z; Wu Q; Zhou Q; Chen J; Chen G; Li G
    Biotechnol Bioeng; 2005 Jun; 90(7):821-9. PubMed ID: 15858793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colored Petri net modeling and simulation of signal transduction pathways.
    Lee DY; Zimmer R; Lee SY; Park S
    Metab Eng; 2006 Mar; 8(2):112-22. PubMed ID: 16376130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.