These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16233950)
1. Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions. Salazar C; Höfer T Biosystems; 2006; 83(2-3):195-206. PubMed ID: 16233950 [TBL] [Abstract][Full Text] [Related]
2. Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions. Salazar C; Höfer T FEBS J; 2007 Feb; 274(4):1046-61. PubMed ID: 17257173 [TBL] [Abstract][Full Text] [Related]
3. Competition effects shape the response sensitivity and kinetics of phosphorylation cycles in cell signaling. Salazar C; Höfer T Ann N Y Acad Sci; 2006 Dec; 1091():517-30. PubMed ID: 17341641 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction. Qian H Biophys Chem; 2003 Sep; 105(2-3):585-93. PubMed ID: 14499920 [TBL] [Abstract][Full Text] [Related]
8. Signaling cascades: consequences of varying substrate and phosphatase levels. Feliu E; Knudsen M; Wiuf C Adv Exp Med Biol; 2012; 736():81-94. PubMed ID: 22161323 [TBL] [Abstract][Full Text] [Related]
9. Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Gunawardena J Biophys J; 2007 Dec; 93(11):3828-34. PubMed ID: 17704153 [TBL] [Abstract][Full Text] [Related]
10. Exploration of trade-offs between steady-state and dynamic properties in signaling cycles. Radivojevic A; Chachuat B; Bonvin D; Hatzimanikatis V Phys Biol; 2012 Aug; 9(4):045010. PubMed ID: 22872041 [TBL] [Abstract][Full Text] [Related]
11. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles. Szymańska P; Kochańczyk M; Miękisz J; Lipniacki T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022702. PubMed ID: 25768526 [TBL] [Abstract][Full Text] [Related]
12. Chemical reaction systems with toric steady states. Pérez Millán M; Dickenstein A; Shiu A; Conradi C Bull Math Biol; 2012 May; 74(5):1027-65. PubMed ID: 21989565 [TBL] [Abstract][Full Text] [Related]
13. An information theoretical analysis of kinase activated phosphorylation dephosphorylation cycle. Qian H; Roy S IEEE Trans Nanobioscience; 2012 Sep; 11(3):289-95. PubMed ID: 22334038 [TBL] [Abstract][Full Text] [Related]
14. Simulations of the active transport of a neutral solute based on a kinase-channel-phosphatase topology. Fiaty K; Charcosset C; Perrin B; Couturier R; Maïsterrena B J Comput Chem; 2005 Feb; 26(3):201-13. PubMed ID: 15599952 [TBL] [Abstract][Full Text] [Related]
16. Protein phosphorylation driven by intracellular calcium oscillations: a kinetic analysis. Dupont G; Goldbeter A Biophys Chem; 1992 Apr; 42(3):257-70. PubMed ID: 1316185 [TBL] [Abstract][Full Text] [Related]
17. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase. Straube R PLoS Comput Biol; 2014 May; 10(5):e1003614. PubMed ID: 24809699 [TBL] [Abstract][Full Text] [Related]
18. A Multiplexed NMR-Reporter Approach to Measure Cellular Kinase and Phosphatase Activities in Real-Time. Thongwichian R; Kosten J; Benary U; Rose HM; Stuiver M; Theillet FX; Dose A; Koch B; Yokoyama H; Schwarzer D; Wolf J; Selenko P J Am Chem Soc; 2015 May; 137(20):6468-71. PubMed ID: 25963544 [TBL] [Abstract][Full Text] [Related]